

Article information

DOI: 10.63475/yjm.v4i2.0169

Article history:

Received: 11 July 2025

Accepted: 04 September 2025

Published: 22 September 2025

Correspondence to:

Piruz Shadbash

Email: shadbashpiruz@gmail.com

ORCID: [0009-0008-1328-482X](https://orcid.org/0009-0008-1328-482X)

How to cite this article

Shadbash P, Taran A, Namazi A, Babadi MB. A promising combination therapy against breast cancer: integrating artificial intelligence, oncolytic virotherapy, probiotic therapy, stem cell therapy, and immunotherapy. *Yemen J Med*;4(2):487-488

Copyright License: © 2025 authors. This scholarly article is disseminated in accordance with the provisions of the Creative Commons Attribution License, thereby permitting unrestricted utilization, distribution, or reproduction across any medium, provided that credit is given to the authors and the journal

Letter to the Editor

A Promising Combination Therapy Against Breast Cancer: Integrating Artificial Intelligence, Oncolytic Virotherapy, Probiotic Therapy, Stem Cell Therapy, and Immunotherapy

Piruz Shadbash^{1,2}, Arman Taran^{3,4}, Alireza Namazi^{5,6}, Marzieh Bahari Babadi⁷

1 Microbiologist, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Microbiologist, Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

3 BSc Student, Department of Microbiology and Virology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran

4 BSc Student, Student Research Committee, Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran

5 BSc Student, Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran

6 BSc Student, Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

7 Biochemist, Department of Biochemistry, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

To the editor,

Breast cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative and multifaceted therapeutic strategies. [1] We propose a promising combination approach that synergizes Artificial Intelligence (AI), oncolytic virotherapy, probiotic therapy, stem cell therapy, and immunotherapy to target breast cancer more effectively.

AI has transformed cancer diagnostics, prognostics, and therapeutic optimization by enabling precision medicine through large-scale data analysis and predictive modeling. [2] AI-driven algorithms can stratify patients based on molecular subtypes and predict individual responses to treatment, facilitating real-time therapeutic adjustments. [3]

Oncolytic virotherapy represents a powerful, targeted approach, where genetically modified viruses selectively infect and lyse tumor cells while activating systemic antitumor immunity. [4] Clinical trials with viruses such as talimogene laherparepvec (T-VEC) have shown promising results, and combining this modality with immunotherapy further enhances antitumor responses. [5]

Probiotic therapy contributes to modulating the gut-immune-tumor axis. [6] Emerging evidence suggests that gut microbiota can significantly influence the host immune response and impact the efficacy of immunotherapy. [7] Specific probiotics may enhance the anti-cancer effects of immune checkpoint inhibitors and reduce therapy-associated toxicity. [8]

Mesenchymal stem cells (MSCs) possess tumor-homing capabilities and can serve as delivery vehicles for therapeutic agents, including oncolytic viruses or immune

modulators. [9] Engineered MSCs offer a safe and efficient means to localize treatment, reducing systemic toxicity and increasing therapeutic efficacy. [10]

Finally, immunotherapy, including immune checkpoint inhibitors and chimeric antigen receptor-T (CAR-T) cell therapy, has redefined cancer treatment paradigms. However, challenges such as immune escape and resistance remain. [11] Integrating AI for patient selection, probiotics for immune modulation, and oncolytic viruses for tumor sensitization may overcome these hurdles.

The convergence of these therapeutic innovations offers a powerful platform against breast cancer, potentially improving survival and quality of life while minimizing adverse effects. Future clinical trials should explore this integrative strategy, guided by AI models for optimal combination timing and dosing. We believe this multi-pronged approach, grounded in precision and personalization, represents a transformative direction for breast cancer therapy.

AUTHORS' CONTRIBUTION

All authors contributed to the completion of this work. The final manuscript was read and approved by all authors.

SOURCE OF FUNDING

None.

CONFLICT OF INTEREST

None.

REFERENCES

1. Ibrahim HK, A. Miftah Almahtout, and E.M. Khalefa, Multifaceted approaches in breast cancer care: insights from research and clinical practice. *Glob J Agri Biol Sci.* 2024;1(1):53-75.
2. Ahmed Z, Mohamed K, Zeeshan S, Dong XQ. Artificial intelligence with a multi-functional machine learning platform development for better healthcare and precision medicine. *Database (Oxford).* 2020;2020:baaa010.
3. Kumar A. AI-driven precision oncology: predictive biomarker discovery and personalized treatment optimization using genomic data. *Int J Adv Res Publ Rev.* 2024;1(3):21-38.
4. Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. *Nat Biotechnol.* 2012;30(7):658-670.
5. Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. *Am J Clin Dermatol.* 2017;18(1):1-15.
6. Li J, Sung CY, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. *Proc Natl Acad Sci USA.* 2016;113(9):E1306-E1315.
7. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. *Science.* 2018;359(6371):97-103.
8. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. *Nat Rev Microbiol.* 2017;15(8):465-478.
9. Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles. *Nanomedicine.* 2013;9(2):174-184.
10. Zhuang W-Z, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. *J Biomed Sci.* 2021;28:1-38.
11. Sharma P, Allison JP. The future of immune checkpoint therapy. *Science.* 2015;348(6230):56-61.