
Received 21 June 2023, accepted 18 July 2023, date of publication 1 August 2023, date of current version 19 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3300575

An Ontology-Based Approach to Reduce the
Negative Impact of Code Smells in
Software Development Projects
IVIAN L. CASTELLANO 1, GILBERTO FERNANDO CASTRO AGUILAR 2,3, NEMURY SILEGA 4,
TAHIR KAMAL 5, MEHDHAR S. A. M. AL-GAASHANI 6, (Graduate Student Member, IEEE),
NAGWAN ABDEL SAMEE7, AND MAALI ALABDULHAFITH7
1Oficina de Estudios de Posgrado, International University of Andalusia, 41092 Seville, Spain
2Facultad de Ingeniería, Universidad Católica de Santiago de Guayaquil, Guayaquil 090109, Ecuador
3Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil 090511, Ecuador
4Department of System Analysis and Telecommunications, Southern Federal University, 347900 Taganrog, Russia
5College of Computer Science and Technology, Zhejiang Normal University, Zhejiang 321017, China
6College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
7Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671,
Saudi Arabia

Corresponding author: Maali Alabdulhafith (MIAlabdulhafith@pnu.edu.sa)

This work was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R407),
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ABSTRACT The quality of software systems may be seriously impacted by specific types of source code
anomalies. For example, poor programming practices result in Code Smells (CSs), which are a specific type
of source code anomalies. They lead to architectural problems that consequently impact some significant
software quality attributes, such as maintainability, portability, and reuse. To reduce the risk of introducing
CSs and alleviate their consequences, the knowledge and skills of developers and architects is essential. On
the other hand, ontologies, which are an artificial intelligence technique, have been used as a solution to deal
with different software engineering challenges. Hence, the aim of this paper is to describe an ontological
approach to representing and analyzing code smells. Since ontologies are a formal language based on
description logics, this approach may contribute to formally analyzing the information about code smells,
for example, to detect inconsistencies or infer new knowledge with the support of a reasoner. In addition,
this proposal may support the training of software developers by providing the most relevant information
on code smells. This ontology can also be a means of representing the knowledge on CSs from different
sources (documents in natural language, relational databases, HTML documents, etc.). Therefore, it could
be a valuable knowledge base to support the struggle of software developers and architects either to avoid
CSs or to detect and remove them. The ontology was developed following a sound methodology. The well-
known tool Protégé was used to manage the ontology and it was validated by using different techniques.
An experiment was conducted to demonstrate the applicability of the ontology and evaluate its impact on
speeding up the analysis of CSs.

INDEX TERMS Code smells, knowledge representation, ontology, reasoning, software quality.

I. INTRODUCTION
Ensure software quality is a relevant goal of software engi-
neering. Maintainability is one of the quality characteristics
defined by ISO/ IEC 25010 [1]. It is defined as the degree

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Piccinno .

of effectiveness and efficiency with which a product can be
modified by the intended maintainers [1]. Software evolution
and maintenance costs increase as systems become more
complex and larger [2].

The maintenance and evolution of systems are usually
hindered by structural problems in the source code that were
not properly addressed in early stages of the development

100146
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6459-0263
https://orcid.org/0000-0001-9050-8550
https://orcid.org/0000-0002-8436-5650
https://orcid.org/0000-0002-2708-0333
https://orcid.org/0000-0003-2612-0978
https://orcid.org/0000-0003-1561-7073


I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

process. These structural problems were called as code smells
(CSs) by Kent Beck [3]. Software is not prevented from
operating by CSs, but they indicate when fundamental design
principles are ignored or design best practices are not used.
As a result, they affect the maintainability, extend the time
required to develop the software, and raise the risk of making
mistakes in later stages of the software life cycle. The lack
of knowledge of software architects and programmers about
CSs is a factor that leads to these structural problems in the
source code [4]. Hence, identifying and adopting approaches
to improve the knowledge of software architects and pro-
grammers about CSs is essential to prevent anomalies in the
source code.

Looking for alternatives to address the aforementioned
issues, we found that the scientific community accepts the
adoption of ontologies as a feasible alternative to man-
age knowledge in different domains [4], [5], [6], [7]. By
using ontologies to represent semantically information, it is
possible to check for consistency and use reasoners to
automatically deduce new knowledge. Some ontology-based
approaches have been developed to represent, analyze and
share knowledge about CSs [5], [6], [7]. Hence, based on
the benefits of adopting ontologies extensively reported in
the literature, this paper aims to describe an ontology-based
proposal to represent, analyze and share knowledge related
to CSs. Especially, this ontology may be a valuable means to
support the training of software architects and programmers.
The information regarding CSs can be found in heteroge-
neous sources such as scientific articles [3], [8], websites,
databases, etc. Consequently, this ontology will make it
possible to examine the consistency of the information con-
tained in diverse sources. In addition, the systematic usage
of this ontology will allow the information represented to
be extended and thus become a valuable knowledge base.
This knowledge base could be exploited to support the work
of those professionals involved in software development
projects.

The structure of this paper is as follows. Section II analyzes
the related works. In Section III some basic concepts regard-
ing CSs and ontologies are presented. Section IV introduces
an ontology to represent the concepts related to CSs. In
Section V, the results of the ontology evaluation are analyzed.
Finally, we present the conclusions and future works.

II. RELATED WORK
Numerous authors argue the advantages of discovering CSs
at an early stage in software development. Paiva and others
[9] present a study done on two Java-developed programs:
MobileMedia and Health Watcher. God Class, God Method,
and Feature Envy were the three types of CS that were exam-
ined using the JSpIRIT tool. On the other hand, research was
conducted to assess six tools: iPlasma, Together, JDeodor-
ant, PMD, DECOR [10]. SourceForge was used to analyze
systems developed in Java. Additionally, Liu [11] evaluated
the ability of the tools Checkstyle, Infusion, PMD, iPlasma,

DECOR, and others to detect CSs. The features of SonarQube
are described by Bastias and López [12], [13] for analyzing
several quality attributes and identifying technological risks
brought on by CSs [14].

The aforementioned methods show how hard scientists
are working to address CSs-related problems. There are
certain limitations, nonetheless, such as the fact that only
a limited number of CSs are handled, CSs detection rate
is low for various tools, or only particular CSs types are
addressed.

The scientific community is interested in dealing with
issues related to how to represent, analyze, and share knowl-
edge about CSs. Adopting tools for communication and
knowledge sharing regarding CSs is essential for educating
software developers. Several authors argue the notable ben-
efits of adopting ontology-based approaches to manage the
knowledge related to CSs. An ontological representation, for
instance, was used by Luo et al. [7] to formally express the
ideas of anti-patterns, CSs, refactoring, and their interactions.
Da Silva et al. [6] describes an ontology capable of represent-
ing the knowledge necessary to keep track of Code Smells and
to evaluate their impact on software. An ontology that collects
and organizes the knowledge about design in object-oriented
micro-architectures is introduced by Garzás and Piattini [5].
They discovered several pertinent terms, including patterns,
refactoring, bad smells, and good practices.

Although they only consider a small subset of CSs, these
approaches demonstrate the pertinence of ontology-based
proposals to manage the knowledge related to CSs. The effect
of CSs on software quality is also not fully examined. Fur-
thermore, there is a lack of empirical data showing how these
methods affect the professional knowledge of those working
on software development projects.

III. BACKGROUND
A. CODE SMELLS
In terms of reusability, understandability, andmaintainability,
CSs can reduce software quality.While a CS does not stop the
software from working, it can delay its development or cause
faults to appear in later stages of the process [15]. Because
appropriate practices aren’t followed, CSs reveal violations
of key design principles, which have a detrimental effect on
the quality of software [16].
Multiple authors have examined various aspects that lead

to design and architectural gaps [17], [18]. For instance,
having large classes and methods including many parameters
are common issues thatmake the code hard to read and tighten
up the coupling. The system maintainability is negatively
impacted by these issues.

For information on state of the art in this field, we reviewed
the literature on CSs [3], [4], [8], [10]. A list of CSs was
created and categorized according to their granularity and
similarity. We discovered that the CSs put forth by Lanza and
Marinescu [8] as well as Fowler and others [3] are the most
addressed by the scientific community.

VOLUME 11, 2023 100147



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

Mäntylä and Lassenius [17], [18] classify CSs into groups
based on how similar they are. Granularity or scope are fac-
tors considered to classify CSs. In that direction, the structural
and lexical levels [12] are considered.

B. ONTOLOGY
In the domain of computing, an ontology is composed of
classes (or concepts), properties (slots or roles), and restric-
tions on properties (or facets) [19]. An ontology and a collec-
tion of individual instances of classes make up a knowledge
base. Studies of ontology-based approaches to information
sharing and communication have been extensively published
in the scientific literature [19], [20], [21], [22], [23].
Some relevant languages to represent ontologies are XML

Schema, Ontolingua, RDF (Resource Description Frame-
work), RDF Schema (RDF-S), OWL, and OWL 2. The fact
that OWL 2 is founded on description logics makes it possible
to use reasoners to automatically verify the consistency of the
represented models. A wide range of operators, such as inter-
section, union, and negation, are included. Protégé, a popular
tool for creating ontologies and serving as a broad foundation
for knowledge representation, supports OWL [24]. Pellet is
an effective reasoner that may be combined with Protégé
to draw conclusions, examine formal logical properties, and
verify the coherence of the ontology.

Adopting a sound methodology that guides the develop-
ment process is essential to creating a high-quality ontology.
Particularly, we adopted the guide recommended by Noy and
McGuinness, which is a well-known methodology [25]. It is
one of the methodologies for creating ontologies that is most
frequently used or cited [26]. The methodology proposes
the following steps: Determine the domain and scope of
the ontology, consider reusing existing ontologies, enumer-
ate important terms in the ontology, define the classes and
the class hierarchy, define the properties of classes (called
relationships or slots), define the facets and/or restrictions on
slots and finally create instances.

IV. ONTOLOGICAL MODEL TO REPRESENT, ANALYZE
AND SHARE KNOWLEDGE ABOUT CODE SMELLS
Following the steps defined in the methodology of Noy and
McGuinness, an ontology to manage the knowledge related
to CSs was obtained. The most important outcomes are
described below.

A. DETERMINE THE DOMAIN AND SCOPE OF THE
ONTOLOGY
This ontology aims to describe various concepts related
to CSs, such as the main features of CSs, CSs classifica-
tions, potentially affected design principles or quality features
which belong to different quality standards. In addition, some
architectural anomalies that may be found in classes and
methods of a system are described as well. Likewise, the
metrics used by some tools to identify anomalies are included.

The ontology represents CSs knowledge, making it a help-
ful tool for training software specialists. Specially, those

specialists responsible for the identification and solution of
CSs. The following competency questions must be answered
by the ontology:

Q1: What is the classification of a code smell?
Q2: What quality features are impacted by a code smell?
Q3: What metrics can be used to discover a specific code

smell?
Q4: What tools help with the identification of a particular

code smell?

B. CONSIDER REUSING EXISTING ONTOLOGIES
Reusing ontologies is a good practice to speed up the develop-
ment of a new one. For example, the concepts Metric, Clazz,
and Method were reused from the ontology ON-TOCEAN
[6]. Classes like Bloaters, Encapsulators, and Dispensable
proposed by Luo [7] were reused as well.

In addition, we searched in the repositories DAML [27]
and DBpedia [28]. In these repositories, a wide number of
ontologies are published. However, these ontologies are not
focused on representing knowledge about CSs.

C. LIST THE RELEVANT TERMS OF THE ONTOLOGY
Based on the literature review, some relevant terms were
identified. The identified concepts are shown in Table 1.
We focused particularly on the quality standard ISO
25000. This standard outlines the quality characteristics and
sub-characteristics of a software. Hence, these characteristics
and sub-characteristics may be impacted by CSs. Conse-
quently, specific ISO 25000 concepts are also incorporated
into our ontology.

D. DEFINE THE CLASSES AND THE CLASS HIERARCHY
Classes, properties, restrictions, and instances are the main
components of an ontology. Fig. 1 shows the class hierarchy
where 22 classes were specified and represented in Protégé.
According to the type of properties, a class in an ontology
can be classified into defined or primitive. Classes with
only necessary conditions are classified as Primitive, whilst
defined classes have necessary and sufficient conditions [30].
Fig. 1 illustrates the class Clazz that subsumes five disjoint
subclasses (highlighted in red box).

E. DEFINE THE PROPERTIES
Properties (object properties and datatype properties) are the
other key component in an ontology. Object properties are
relationships between two individuals. Hence, instances of
different classes can be related by means of object properties.
On the other hand, datatype properties describe relationships
between an individual and data values. Therefore, to link an
individual to an XML Schema Datatype value or a rdf literal,
a datatype property is used [30].

We identified 38 object properties in our ontology. Table 2
shows some object properties as well as their domain and
range. Whilst Fig. 2 depicts several relationships between
them. For instance, the property isClassificationOf links

100148 VOLUME 11, 2023



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

TABLE 1. Relevant concepts to be represented in the ontology.

individuals of the classes ClassificationTypeCodeSmell and
TypeCodeSmell; the property affectsQualityCharacteristic
links individuals of the classes TypeCodeSmell and Quality-
Characteristic; whilst the property canBeIdentifiedByMetric
links individuals of the classes TypeCodeSmell and Metric.
similarly, the property canBeIdentifiedByTool links individu-
als of the classees TypeCodeSmell and Tool.
In an ontology, there is an inverse property for each object

property. It means that if a property relates individual A
to individual B, then its inverse property relates individ-
ual B to individual A. Fig. 2 depicts that isClassifiedBy
is the inverse property of isClassificationOf, isQuality-
CharacteristicAffectedBy is the inverse of affectsQuality-
Characteristic, allowIdentifyCodeSmell is the inverse of
canBeIdentifiedByMetric, and helpsToIdentifyCodeSmell is
the inverse of canBeIdentifiedByTool.

FIGURE 1. Classes of the ontology to represent code smells.

TABLE 2. Set of object properties with domain and range.

Some datatype properties were specified in the ontology to
complete the concept descriptions. The domain and range of
these properties are depicted in Table 3.

F. DEFINE FACETS AND/OR RE-STRICTIONS ON SLOTS
The expressivity richness of OWL allows defining different
types of restrictions. For example, cardinal restrictions are

VOLUME 11, 2023 100149



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

FIGURE 2. A sample of object properties.

TABLE 3. Data properties included in the ontology.

used to specify the number of relationships that an individual
may participate in for a given property. Fig. 3 shows a cardinal
restriction to classify the instances of the class Large_Class.
Based on this statement, a reasoner will classify automatically
as Large_Class the instances of the class Clazz with more
than 100 code lines.

FIGURE 3. A cardinal restriction for the class Large_Class.

G. DEFINE INSTANCES
To illustrate the ontology applicability, we used it to spec-
ify the knowledge related to CSs in a project to develop
a software. Fig. 4 and Appendix depict instances of
the classes TypeCodeSmell and ClasificationTypeCodeSmell,
respectively.

We defined some concepts associated with a software
development project to illustrate how the ontology could
be used to represent CSs. Fig. 4 shows instances of the
class TypeCodeSmell. Whilst Appendix shows instances of
the class ClasificationTypeCodeSmell. This version of the
ontology includes 96 individuals.

FIGURE 4. Instances of the class ClasificationTypeCodeSmell.

V. RESULTS OF THE EVALUATION PROCESS
The two main steps to evaluate an ontology are: checking the
consistency and verifying that it meets the defined require-
ments. The consistency checking enables confirming that the
ontology is free of contradictions. By using a reasoner, it is
possible to evaluate the consistency and classify the indi-
viduals automatically. Specifically, reasoner Pellet was used
throughout the development process of our ontology. Thus,
we demonstrated that the ontology satisfies the requirements
for a formal system.

To verify that the ontologymeets the defined requirements,
we evaluated how the competence questions are answered.
To illustrate how the competence questions are answered, the
ontology was populated, and the reasoner Pellet was applied.
The results of this evaluation are detailed below:
Q1:

?
What is the classification of a code smell?

First of all, we selected in Protégé the individual CSLarge-
Class, which is an instance of the class TypeCodeSmell.
The value of the object property isClassifiedBy in Fig. 5
illustrates how the reasoner classified the selected individual
as a Bloater (red box).

FIGURE 5. Inferences for CSLargeClass, an instance of the class
TypeCodeSmell.

Q2: What quality features are impacted by a code smell?
When a TypeCodeSmell is chosen, numerous quality

characteristics may be associated by means of the property
affectsQualityCharacteristic because a CS may affect one or
more quality characteristics. Fig. 5 illustrates how the specific
CSLargeClass, a subclass of TypeCodeSmell, influences
the quality characteristic Maintainability (object property
affectsQualityCharacteristic) (black box).
Q3: What metrics can be used to discover a specific code

smell?
This information can be obtained by choosing an instance

of the TypeCodeSmell class and checking the values of the

100150 VOLUME 11, 2023



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

property canBeIdentifiedByMetric. The individualCSLarge-
Class can be identified by metrics such as CYCLO, LCOM,
WMC, and LOC, as shown in Fig. 5 (highlighted in the blue
box).
P4:

?

What tools can be used to identify a specific code
smell?

The value of the property canBeIdentifiedByToolwill indi-
cate the tools that can identify a specific CS. For example,
Fig. 6 (highlighted in red box) shows that CSGodClass can-
BeIdentifiedByTool JDeodorant, VComplex, and inCode.

FIGURE 6. Inferences for CSGodClass, an instance of the class
TypeCodeSmell.

VI. ASSESSING THE IMPACT OF THE ONTOLOGICAL
MODEL
To demonstrate with empirical evidences the impact of our
proposal, we conducted an experiment. Specifically, we are
interested in assessing whether the application of this onto-
logical approach speeds up the analysis of knowledge related
to CSs. We conducted a quasi-experiment with ten software
architects and developers who have been involved in different
software projects. We measured the time that the participants
needed to analyze information regarding CSs. Firstly, they
used different means to find information about CS. Secondly,
the participants used our approach.

To carry out this experiment, we used the competence ques-
tions that were defined to specify the scope of the ontology:

Q1: What is the classification of a code smell?
Q2: What quality features are impacted by a code smell?
Q3: What metrics can be used to discover a specific code

smell?
Q4: What tools help with the identification of a particular

code smell?
Specifically, to answer these questions, we selected the

CS CSLargeClass and the tool VComplex. Considering that
the participants have different levels of knowledge about
CSs, they searched for information from different sources
such as scientific literature, work reports, databases, etc.
Our preliminary hypothesis was that the application of our
approach might reduce by 10 times the time necessary to
analyze the knowledge regarding CSs. The second column
in Table 4 shows the time that spent each participant to
answer the questions without using our approach. Whilst
the third column shows the time that spent each participant

to answer the questions using our approach. The last row
shows the average time for each observation. In this row, it is
shown that for the first observation, the average time was
778 seconds whilst for the second observation, the average
time was 68 seconds. Hence, the time by using our approach
was reduced by 11.44 times. These statistics demonstrated
our preliminary hypothesis. Thus, we have quantitative evi-
dence that demonstrates the positive impact of our proposal.
Specially, this ontological model can be a valuable means
to support the training of software developers. Additionally,
we are designing new experiments to assess the impact of our
approach to enhance other variables, for example, the time to
detect and fix CSs.

TABLE 4. Results of the experiment.

VII. CONCLUSION AND FUTURE WORK
This paper presented an ontology-based approach to support
the representation and analysis of the knowledge related to
CSs. This approach addresses some of the gaps that were
found in the related work review. Likewise, the literature
review helped identify some types of CSs, tools for detecting
detection, and ontologies developed to represent knowledge
related to CSs. The development of the ontology was guided
by a well-known methodology which contributed to ensur-
ing its quality. The ontology was represented using OWL.
Since this is a formal language based on description logics,
it enables the automatic consistency checking of the knowl-
edge. In addition, this ontology can be analyzed by a reasoner
to infer new knowledge.

We conducted an experiment to demonstrate the benefits
of applying our approach. The results of the experiment
indicate that using this approach makes it possible to analyze
knowledge related to CSs 10 times faster than by other means.
In addition, this ontology covers not only specific information
regarding CSs, but includes information related to software
projects and other concepts related to software quality. There-
fore, the analysis of the knowledge can be improved in terms
of completeness and quality. As a result, this ontologymay be
a helpful tool to aid in the education of software architects and
programmers because it includes a wide range of CS-related
and other pertinent concepts.

VOLUME 11, 2023 100151



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

FIGURE 7. Instances of the class TypeCodeSmell.

We focus the future work on extending the ontology by
including new concepts about the software development life
cycle and their relation to CSs. In addition, the systematic
application of this ontology in real environments will con-
tribute to expanding the information that it represents as well
as identifying new opportunities to improve it.

APPENDIX
INSTANCES OF THE CLASS TypeCodeSmell
See Fig. 7.

ACKNOWLEDGMENT
The authors would like to express their gratitude to Princess
Nourah bint Abdulrahman University Researchers Support-
ing Project number (PNURSP2023R407), Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia.

REFERENCES
[1] J. Estdale and E. Georgiadou, ‘‘Applying the ISO/IEC 25010 quality

models to software product,’’ in Systems, Software and Services Process
Improvement. Cham, Switzerland: Springer, 2018.

[2] A. April and A. Abran, Software Maintenance Management: Evalua-
tion and Continuous Improvement, vol. 67. Hoboken, NJ, USA: Wiley,
2012.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code. Reading,
MA, USA: Addison-Wesley, 1999.

[4] A. Malavolta, ‘‘Análisis de detección de Code Smells para el lenguaje
JavaScript,’’ M.S. thesis, Facultad de Ciencias Exactas, Universidad
Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires,
Argentina, 2018.

[5] J. Garzas and M. Piattini, ‘‘An ontology for microarchitectural design
knowledge,’’ IEEE Softw., vol. 22, no. 2, pp. 28–33, Mar. 2005.

[6] L. P. da Silva Carvalho, R. Novais, L. do Nascimento Salvador, and
M. G. de Mendonça Neto, ‘‘An ontology-based approach to analyzing the
occurrence of code smells in software,’’ in Proc. 19th Int. Conf. Enterprise
Inf. Syst., 2017, pp. 155–165.

[7] Y. Luo, A. Hoss, and D. L. Carver, ‘‘An ontological identification of rela-
tionships between anti-patterns and code smells,’’ in Proc. IEEE Aerosp.
Conf., Mar. 2010, pp. 1–10.

[8] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Berlin, Germany: Springer, 2007.

[9] T. Paiva, A. Damasceno, E. Figueiredo, and C. Sant’Anna, ‘‘On the eval-
uation of code smells and detection tools,’’ J. Softw. Eng. Res. Develop.,
vol. 5, no. 1, p. 7, 2017.

[10] K. Alkharabsheh, Y. Crespo, J. Taboada, and E. Manso, ‘‘Comparación
de herramientas de Detección de design smells,’’ in Proc. JISBD, 2016,
pp. 159–172.

[11] X. Liu and C. Zhang, ‘‘The detection of code smell on software develop-
ment: Amapping study,’’ inProc. 5th Int. Conf.Machinery,Mater. Comput.
Technol., 2017, pp. 560–575.

[12] O. A. Bastias, ‘‘Código con ‘mal olor’: Un mapeo sistemático,’’ Revista
Cubana de Ciencias Informáticas, vol. 12, no. 4, pp. 156–176, 2018.

[13] J. V. López, ‘‘Auditoría mantenibilidad aplicaciones según la ISO/IEC
25000,’’ M.S. thesis, Facultad de Informática, Universidad Complutense
de Madrid, Madrid, Spain, 2015.

[14] J. P. O. Delgado, ‘‘Análisis de seguridad y calidad de aplicaciones (Sonar-
qube),’’ M.S. thesis, Departamento de Informática, Universidad Obterta de
Cataluyna, Manizales, Colombia, 2015.

[15] A. Yamashita and L.Moonen, ‘‘Do code smells reflect important maintain-
ability aspects?’’ inProc. 28th IEEE Int. Conf. Softw.Maintenance (ICSM),
Sep. 2012, pp. 306–315.

[16] K. AlKharabsheh, Y. Crespo, E. Manso, and J. Taboada, ‘‘Sobre el grado
de acuerdo entre evaluadores en la detección de Design Smells,’’ in Proc.
Jornadas de Ingeniería del Software y Bases de Datos, (JISBD), 2016,
pp. 143–157.

[17] M. V. Mäntylä and C. Lassenius, ‘‘Subjective evaluation of software
evolvability using code smells: An empirical study,’’Empirical Softw. Eng.,
vol. 11, no. 3, pp. 395–431, Jul. 2007.

[18] M. Mantyla, J. Vanhanen, and C. Lassenius, ‘‘A taxonomy and an initial
empirical study of bad smells in code,’’ in Proc. Int. Conf. Softw. Mainte-
nance (ICSM), 2003, pp. 381–384.

[19] N. F. Noy and D. L. McGuinness, ‘‘Ontology development 101: A guide
to creating your first ontology,’’ Stanford Knowl. Syst. Lab., Tech. Rep.
KSL-01-05, Stanford Med. Inform., Stanford, CA, USA, Tech. Rep. SMI-
2001-0880, 2001.

100152 VOLUME 11, 2023



I. L. Castellano et al.: Ontology-Based Approach to Reduce the Negative Impact of Code Smells

[20] J. T. F. Breis, ‘‘Un entorno de integración de ontologías para el desarrollo
de sistemas de gestión del conocimiento,’’ Ph.D. thesis, Departamento
de Ingeniería de la Información y las Comunicaciones, Universidad de
Murcia, Murcia, España, 2003.

[21] C. Welty and N. Guarino, ‘‘Supporting ontological analysis of taxonomic
relationships,’’ Data Knowl. Eng., vol. 39, no. 1, pp. 51–74, Oct. 2001.

[22] E. M. Beniaminov, ‘‘Ontology libraries on the web: Status and prospects,’’
Autom. Documentation Math. Linguistics, vol. 52, no. 3, pp. 117–120,
May 2018.

[23] J. D. S. Benjumea, ‘‘Ontologías para conceptualización de modelos de
negocio,’’ M.S. thesis, Facultad de Ingenierías, Universidad de Medellín,
Medellín, Colombia, 2013.

[24] A. F. Hernández, ‘‘Modelo ontológico de recuperación de información para
la toma de decisiones en gestión de proyectos,’’ Ph.D. thesis, Departa-
mento de Información y Comunicación, Universidad de Granada, Granada,
España, 2016.

[25] M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi,
‘‘Ontology engineering in a networked world,’’ in Ontology Engineering
in a Networked World. Berlin, Germany: Springer, 2012, pp. 1–435.

[26] A. Sattar, E. Salwana, M. Nazir, M. Ahmad, and A. Kamil, ‘‘Comparative
analysis of methodologies for domain ontology development: A systematic
review,’’ Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, pp. 99–108, 2020.

[27] DAML. (2004). DAML Ontology Library. Accessed: Jun. 1, 2023.
[Online]. Available: http://www.daml.org/ontologies

[28] DBpedia. (2019). D.M. Contributors. Accessed: Jun. 1, 2023.
[Online]. Available: http://mappings.dbpedia.org/index.
php?title=Main_Page&oldid=53546

[29] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. V. Staa,
‘‘On the relationship of code-anomaly agglomerations and architectural
problems,’’ J. Softw. Eng. Res. Develop., vol. 3, no. 1, p. 11, Dec. 2015.

[30] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and
C. Wroe, ‘‘A practical guide to building owl ontologies using protégé
4 and co-ode tools edition 1. 2,’’ Univ. Manchester, Manchester, U.K.,
Tech. Rep., 2009, p. 107. [Online]. Available: http://mowl-power.cs.man.
ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf

IVIAN L. CASTELLANO received the degree and
M.Sc. degrees from the University of Informat-
ics Sciences, Habana, Cuba, in 2012 and 2021,
respectively. She is currently pursuing the master’s
degree in economics, finances and computing with
the International University of Andalusia, Huelva,
Spain. She has published five papers in interna-
tional conferences. Her research interests include
software quality, ontology-driven engineering, and
code smells.

GILBERTO FERNANDO CASTRO AGUILAR
received the bachelor’s degree from Universidad
Católica de Santiago de Guayaquil (UCSG), the
master’s degree from Universidad de Guayaquil
(UG), and the Ph.D. degree from the University
of Informatics Sciences (UCI). He is a Principal
Professor of the Faculty of Sciences Mathematics
and Physics, UG, and the Faculty of Engineering,
UCSG. He has been theManager of revenue assur-
ance projects with National Telecommunications

Corporation (CNT EP), Ecuador. He was a Revenue Assurance Certified in
Herzliya-Israel, for research in computer engineering, software technologies,
and data mining applications to help in decision making. He has publications
in magazines, presentations, and events of high national and international
impact. He is a Tutor-Mentor of regional and Latin American innovation
projects. His research interests include basic sciences, bio-knowledge, and
industrial development. He is a member of the body of referees of aca-
demic publications, the scientific committee, and the international networks
of projects and technology, RISEI and RIIPRO. He is also a member of
the editorial board of UCSG, from 2022 to 2027; a Volunteer Mentor of
the program ‘‘Sin Fronteras’’ Latin America, in 2022; a peer evaluator of the
evaluation process for accreditation purposes of Universities and Polytechnic
Schools of Ecuador; a member of the relevance project, educational model,
and accompaniment for institutional accreditation of UG, in 2023; and a
delegate alternate to the Superior University Council, UG.

NEMURY SILEGA received the degree and
Ph.D. degrees from the University of Infor-
matics Sciences, Habana, Cuba, in 2007 and
2014, respectively. Currently, he is a Researcher
Leader with Southern Federal University, Tagan-
rog, Russia. He has published more than 50 papers
in international conferences and more than 20 in
journals. His current research interests include
model-driven development, ontology-driven engi-
neering, and business process modeling. In 2015,

he received the ErasmusMundus Scholarship for a postdoctoral stay with the
University of Granada.

TAHIR KAMAL received the degree from the Uni-
versity of Agriculture Faisalabad, Pakistan, and
the Ph.D. degree from the Chongqing University
of Post and Telecommunications, China, in 2021.
Currently, he is a Lecturer with Zhejiang Normal
University, China. He has published more than
ten papers in international conferences and jour-
nals. His current research interests include model-
driven development, ontology-driven engineering,
business process modeling, agile development,

software engineering, and machine learning.

MEHDHAR S. A. M. AL-GAASHANI (Gradu-
ate Student Member, IEEE) received the B.Sc.
degree from Belgorod State Technological Uni-
versity (BSTU), Russia, and the M.Sc. degree
from Don State Technical University, Russia. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Technology,
Chongqing University of Posts and Telecommuni-
cations, Chongqing, China. His research interests
include machine learning, image processing, and
the IoT.

NAGWAN ABDEL SAMEE received the B.S.
degree in computer engineering from Ein Shams
University, Egypt, in 2000, and the M.S. degree
in computer engineering and the Ph.D. degree in
systems and biomedical engineering from Cairo
University, Egypt, in 2008 and 2012, respectively.
Since 2013, she has been an Assistant Profes-
sor with the Information Technology Department,
CCIS, Princess Nourah bint Abdulrahman Univer-
sity, Riyadh, Saudi Arabia. Her research interests

include data science, machine learning, bioinformatics, and parallel comput-
ing. Her awards and honors include the Takafull Prize (Innovation Project
Track), the Princess Nourah Award in Innovation, the Mastery Award in
Predictive Analytics (IBM), the Mastery Award in Big Data (IBM), and the
Mastery Award in Cloud Computing (IBM).

MAALI ALABDULHAFITH was born in Saudi Arabia, in September 1985.
She received the Ph.D. degree in computer science from Dalhousie Univer-
sity, Halifax, Canada, in 2017. In 2014, she joined the College of Computer
and Information Science (CCIS), Princess Noura University (PNU), as a Lec-
turer and was promoted to an Assistant Professor, in 2018. Currently, she is
the Director of data management and performance measurement with CCIS,
overlooking and managing the strategy of the college. Her research interests
include machine learning, data analytics, emerging wireless technology, and
technology applications in health care.

VOLUME 11, 2023 100153


