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Abstract

Nuclei segmentation plays an essential role in histology analysis. The nuclei segmentation in histology images is
challenging in variable conditions (clinical wild), such as poor staining quality, stain variability, tissue variability, and
conditions having higher morphological variability. Recently, some deep learning models have been proposed for
nuclei segmentation. However, these models rarely solve the problems mentioned above simultaneously. Most of the
information in Hematoxylin and Eosin (H&E) stained histology images is in its channel, and the remaining informa-
tion is in the spatial domain. We observed that most problems could be solved by considering channel and spatial
features simultaneously, e.g., the spatial and channel features provide the solution to the morphological variability
and staining variability, respectively. Therefore, we propose a novel spatial-channel attention-based modified UNet
architecture with ResNet blocks in encoder layers. The UNet baseline preserves coarse and fine features, thus prov-
ing the solution to the tissue variability. The proposed method significantly improves the segmentation performance
compared to the state-of-the-art methods on three different benchmark datasets. We demonstrate that the proposed
model is generalized for 20 cancer sites, more than any reported literature. The proposed model is less complex than
most state-of-the-art models. The impact of the proposed model is that it will help improve further procedures such
as nuclei instance segmentation, nuclei classification, and cancer grading.
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Table 1: List of acronyms used in the document

Acronym Definition
BCE Binary Cross Entropy
CAD Computer Assisted Diagnosis
CNN(s) Convolutional Neural Network(s)
DCNN(s) Deep Convolutional Neural Network(s)
FCN(s) Fully Connected Networks(s)
H&E Hematoxylin and Eosin
H&N Head and Neck
ReLU Rectified Linear Unit
WSI Whole Slide Image

1. Introduction

Hematoxylin and Eosin (H&E) stained histology
slides are a gold standard for micro-level cancer analy-
sis. In medical practices, a human expert analyzes these
slides. In case Computer-assisted diagnosis (CAD)
systems are available, digital microscopic images are

taken and analyzed. These digitized whole slide images
(WSI) are usually of size 100,000 x 100,000. This pro-
cess is tiresome and requires advanced technical knowl-
edge. Although computer-based automated analysis is
being used in the routine clinical process of cancer di-
agnosis, it is still subjective to the human interpretation
for cases such as nuclei segmentation. Nuclei segmen-
tation is a fundamental requirement for the analysis and
diagnosis procedures. For example, leiomyosarcoma
is identified with the help of blunt-ended nuclei. Ab-
normal epithelium nuclei distribution helps to identify
squamous cell carcinoma (SCC). In prostate cancer, the
enlargement of the nuclei helps to identify adenocarci-
noma. Thus the importance of the precise segmentation
of nuclei in the histology images can not be neglected.

The conventional nuclei segmentation in histology is
a routine task for technicians. However, it is still a chal-
lenging task for CAD’s in clinically wild conditions.
This is due to the staining variability, poor staining qual-
ity, staining artifacts, variable magnification level, nu-
clear density, variation in tissue type, and image quality
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(Xing and Yang, 2016). Early CAD systems were based
on traditional image processing methods (Madabhushi
and Lee, 2016). The most significant disadvantages of
traditional methods are that they lack generalization and
robustness. Recently, deep learning semantic segmenta-
tion methods have been developed for various cancers.
These methods usually improve the generalization abil-
ity. The early class of such methods includes FCN’s
(Fully Connected Networks) and their variants (Sultana
et al., 2020). Although these methods performed signifi-
cantly better than the traditional techniques, these meth-
ods are unaware of global contexts, which are essen-
tial for tissue generalization and susceptibility to stain-
ing variation. Furthermore, they produce coarse output
and have slow real-time inference performance. The
encoder-decoder class of networks (SegNet, U-Net, De-
ConvNet, V-Net, and their variants) improves the tis-
sue generalization capability, and they are less suscep-
tible to staining variations and artifacts. However, they
lose high-resolution representations through the encod-
ing process (Shervin et al., 2021). Recently, a few meth-
ods using attention mechanisms have been developed
for medical imaging (Shan and Yan, 2021; Lal et al.,
2021; Jin et al., 2020; Guo et al., 2021; Schlemper et al.,
2019). The attention mechanism for histology segmen-
tation usually uses channel attention. The channel atten-
tion mechanism has improved performance concerning
some of the wild conditions.

As discussed earlier, most of the information in H&E
stained histology images is in its channel; the remain-
ing information is in the spatial domain. Using this
information accurately may further increase the nuclei
segmentation performance, especially in wild clinical
conditions. We believe that integrating multiple at-
tention mechanisms provides further performance im-
provement based on the above observations. We pro-
pose a robust method for segmenting out nuclei from
histology images. The proposed method is based on a
modified UNet with dual attention mechanisms, a re-
designed encoder, and a decoder. The spatial attention
provides the solution to the morphological variability,
while the channel attention provides the staining vari-
ability. The UNet baseline preserves coarse and fine
features, thus proving the solution to the tissue vari-
ability. The resulting segmentation act as an essential
stage for automatic computer-based cancer analysis. It
provides prognostic value by acting as a pre-processing
stage. The prognostic values include grading, classifi-
cation, progression, and micro-environment analysis. It
will also be a pre-processing step for an automated can-
cer grading system. The main contribution of this work
is as follows,

1. A novel network that uses both channel and spatial
features to overcome the drawbacks of the existing
literature. The dual attention mechanism embedded
into a UNet makes it less susceptible to harsh condi-
tions caused due to morphological variability, tissue
and staining variation, and staining quality.

2. We specifically demonstrate that the proposed net-
work is widely generalized in terms of tissue vari-
ability. It is tested on 20 different tissue sites in three
different largest available datasets, far more than any
reported literature.

3. The network is also generalized for a standard range
(20x and 40x) of magnification levels. The datasets
used to test the network consist of both standard
magnification levels.

4. The detailed studies of the method demonstrate the
robustness of the method from a broader perspective.

2. Related Work

Early traditional image processing techniques (Rogo-
janu et al., 2015; Landini et al., 2016; Fouad et al., 2017;
Linder et al., 2012) use basic features of objects in his-
tology images, including shape, size, texture, color, lo-
cation, and local binary patterns (LBPs). The biggest
drawbacks of these traditional techniques are that they
are not generalized and have extremely low segmenta-
tion performance due to hand-crafted features. Super-
vised deep learning methods have recently been used
to segment medical images due to their superior per-
formance. The earliest deep learning methods were
FCN’s (Zhang et al., 2017; Zhao et al., 2017; Yuan et al.,
2017; Rezaei et al., 2019b). These methods provide bet-
ter generalization compared to the traditional methods.
However, they show minimal performance for prob-
lems such as tissue-wise generalization, staining vari-
ability, etc. The development of the encoder-decoders
class of models, specifically for medical image segmen-
tation, outclassed their predecessor FCN style models.
The most common is UNet (Ronneberger et al., 2015),
specifically designed for biomedical image segmenta-
tion. (Yurttakal and Erbay, 2020) presents a method
for segmenting the cells in combined P63 and H&E
stained histology images for larynx cancer based on
(Ronneberger et al., 2015). (Zhou et al., 2018b) intro-
duces convolution layers in the skip connection path to
further learn from the intermediate features set, thus fur-
ther improving UNet capabilities. Other variants of the
UNet (Dubost et al., 2017; Naylor et al., 2019; Li et al.,
2018) were proposed to have a slight improvement in
the performance. In general encoder-decoder models

2



can counter stain variability, poor staining, and morpho-
logical variation to an extent. Parallel to the encoder-
decoder networks, another class of models for nuclear
segmentation based on ResNet and its variants was pro-
posed. (Lin et al., 2017) and (Zhou et al., 2018a) pro-
posed a model which makes use of the residual structure
(He et al., 2016a). (Simon et al., 2019) proposed a net-
work is based on Preact-ResNet50 (He et al., 2016b),
which outperformed the existing encoder-decoder and
ResNet style networks.

Attention mechanisms have recently shown superior
performance for segmentation tasks, particularly nu-
clear segmentation. (Lal et al., 2021) proposed a Nu-
cleiSegNet, which is a UNet-style architecture. It uses
an attention mechanism developed by (Schlemper et al.,
2019). The encoder is based on ResNet. The ResNet
and attention gate combination produces highly im-
proved results compared to the existing methods. The
attention mechanism designed with a UNet baseline
helps keep the benefits of the encoder-decoder and the
attention benefits simultaneously.

3. Proposed Architecture

The literature review suggests that UNet-based deep
learning architectures are highly effective for segmen-
tation H&E stained histology images. In a UNet, the
encoder extracts high semantic coarse features. In con-
trast, the decoder extracts low semantic fine features.
These features are fused at every stage. This helps
the network to reuse the spatial information, which is
lost during the max-pooling operations. This produces
improved performance compared to its predecessors.
However, the network still has limitations. The en-
coder features are directly fused with decoder features.
These features possess information that does not con-
tribute to the performance of the network. It produces
extra parameters, increasing the computation and mem-
ory requirements. Instead, only the required informa-
tion should be fused. In the case of histology images,
the required information is inside spatial and channel
features. The histology images are H&E stained. There-
fore a huge part of the information lies in the channels
of the image. The second problem is that the contextual
information is not enough. It leads to reduced perfor-
mance due to the gap between the low and high-level
contextual features. The third problem is the encoder
block itself. The encoder block possesses simple con-
volution layers. These blocks introduce a gap between
high-level and low-level features. The introduction of
the intermediate layers at the skip connection path to

tackle the first problem causes a minor vanishing gradi-
ent problem. This problem is solved by replacing these
convolution blocks with ResNet blocks.

Using the earlier observations, we propose the fol-
lowing amendments. Inspired by (Khanh et al., 2020),
we introduce spatial-channel attention blocks as inter-
mediate layers between encoder and decoder. Further-
more, we replace the convolution blocks with a rede-
fined ResNet Layer. The encoder is made up of a
ResNet block and max-pooling layer. The attention
block is made up of spatial attention and channel atten-
tion blocks. The decoder is made up of attention fusion
and transposed convolution. Fig. 1 shows the network
and its building blocks. Further details are presented in
the following subsections.

3.1. Residual Block

The residual block extracts semantic rich features at
each level (i). We have redesigned the original ResNet
block proposed by (He et al., 2016a) to make it more
robust. The input to the residual block at each level
is passed through the 1x1 convolution layer, followed
by the ReLU layer. This is followed by 3x3 convo-
lution, ReLU, and a batch normalization layer, respec-
tively. Another 1x1 convolution and ReLU are applied.
The output is then fused with the input passed through
1x1 convolution. This fuses the shallow-level semantic
features with the deep-level semantic features. This en-
ables the residual blocks to learn from both shallow and
deep-level semantic features. After fusion, a 3x3 con-
volution followed by ReLU and batch normalization is
applied. The proposed residual block is shown in Fig.
1. Mathematically, the residual block is expressed as,
Eq.(1).

Xi,0 = HF
1,1 (ini)

Ci,0 = f
(
HF

1,1 (ini)
)

Ci,1 = BN
(

f
(
HF

3,3
(
Ci,0
)))

Xi,1 = f
(
HF

1,1
(
Ci,1
))

outi = BN
(

f
(
HF

3,3
{
Xi,0 ⊕ Xi.1

}))


(1)

where ini denotes input and Outi denotes output of the
residual block at any layer i. Ci, j denotes intermediate
features, HF

k,k denotes convolution, k denotes kernels, F
denoted filters, f denotes ReLU activation, BN denotes
batch normalization and ⊕ denotes concatenation.

3.2. Attention Mechanism

To solve the problems caused due to the direct skip
connections, various attempts have been made (Zhou
et al., 2018b; Zeng et al., 2019; Weng et al., 2019; Wan
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Figure 1: Overview of the proposed model architecture along with the detailed attention mechanism and ResNet Block.

et al., 2020). These methods use features maps from
the encoders without removing the redundant features.
Recently, single-stage attention mechanisms have been
proposed (Jin et al., 2020; Guo et al., 2021). These
have significantly improved the segmentation perfor-
mance of the UNet based networks. However, mul-
tiple attention mechanisms are required for histology
images segmentation because of both spatial and chan-
nel features. Therefore we deploy spatial-channel at-
tention inspired by (Khanh et al., 2020). However, we
have added transposed convolution layer at the end of
the decoder instead of naive upsample layer, after the
feature fusion. This enables the network to learn the up-
sampling, which provides better performance for poorly
stained slides. The channel and spatial attention blocks
are shown in Fig. 1. These blocks are expressed mathe-
matically as Eq.(2), and Eq.(3),

a = HF/8
1,1 (AvgPool (Fe)) ⊕ HF/8

1,1 (MaxPool (Fe))
b = HF/8

1,1 (AvgPool (Fd)) ⊕ HF/8
1,1 (MaxPool (Fd))

Ac = σ
(
HF/8

1,1 (a ⊕ b)
) (2)

c = H1
1,1 (MaxPool (AvgPool (Fe)))

d = H1
1,1 (MaxPool (AvgPool (Fd)))

As = σ (c ⊕ d)
(3)

where HF
k,k denotes convolution, k denotes kernels, F

denoted filters, and ⊕ denotes concatenation. Ac, and
As are the outputs of the channel attention and spatial

attention blocks, Fd represent decoder features, Fe rep-
resents encoder features respectively.

Finally the refined features Fr are obtained by ele-
ment wise multiplication ( ⊗) of spatial attention map As

and channel attention map Ac with the encoder features
Fe. The feature fusion is mathematically represented as,
Eq.(4).

Fr = Fe ⊗ As ⊗ Ac (4)

3.3. Loss Function
Initially, we used binary cross-entropy loss function,

which is widely used for segmentation tasks. However,
when compared with the loss function reported by (Lal
et al., 2021), for nuclei segmentation, we found that the
loss function reported by (Lal et al., 2021) slightly per-
formed better (see Section 6.3 Ablation Study for com-
parison). The loss function is represented as, Eq.(5).

L =
Dice Loss ∗ Jaccard Loss
Dice Loss + Jaccard Loss

(5)

4. Materials and Evaluation matrices

4.1. Dataset
The proposed architecture is evaluated on three dif-

ferent H&E stained digital histology datasets. The first
dataset, PanNuke was recently presented by (Gamper
et al., 2020). It is the most comprehensive histology
dataset. The dataset is obtained from nineteen differ-
ent tissues, mainly H&N, breast, liver, prostate, lungs,
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etc. The dataset contains semi-automatically annotated
200,000 cancer and non-cancer nuclei. The dataset is
available in three splits while maintaining the ratio of
cancer and non-cancer cells. The second dataset we
have used is Kumar (Kumar et al., 2017). The dataset
contains seven different normal and cancerous tissues,
i.e., breast, bladder, colon, liver, kidney, prostate, and
stomach. The dataset contains a total of 30 images with
around 22,000 nuclei. The third dataset we have used
is CPM17 (Computational Precision Medicine - 2017)
(Vu et al., 2019). It contains a total of 7570 nuclei.
The images are taken at 40x and 20x magnification.
Since the above-mentioned data is obtained from dif-
ferent sources, we apply pre-processing to convert it to
a single standard format. The data is prepared under the
following policy.

• The size of the image should be 256x256. If the
image’s size is greater than 256x256, it is resized
by taking 256x256 patches from the image. For ex-
ample, if the original data size is 1024x1024, then
16 patches of 256x256 are extracted from the im-
age.

• The magnification should be 20x or 40x. If the
magnification is different, the image is digitally
zoomed in or zoomed out such that the magnifi-
cation effect of 40x or 20x is produced. The 40x
magnification is selected since the standard WSI is
usually at 20x or 40x magnification (Mahbod et al.,
2021)

• Data augmentation is applied to datasets for train-
ing. Datasets with more than 250 images are
flipped vertically and horizontally. Additional
data augmentation techniques, such as rotation and
shifting, are applied to the datasets having less than
250 images.

• Blank images or images with no labels are re-
moved.

It is to be noted that we only utilize other datasets,
i.e., Kumar and CPM-17, to test our model. We do not
train our model on these datasets. During our experi-
ments, we trained our model on these smaller datasets
but found that these datasets do not provide efficient re-
sults compared to when we trained the model on the
PanNuke dataset. To test our model using these datasets,
we utilize the test split provided by the datasets’ authors.

4.2. Evaluation Criteria
We have used the F1 score, Jaccard index, precision,

and recall as performance evaluation metrics. These

matrices are commonly used as performance evaluation
matrices in histology image segmentation (Tosta et al.,
2019; Das et al., 2018; Rezaei et al., 2019a). The pre-
cision measures the purity of positive detection for the
ground truth, while recall measures the completeness
of positive predictions to the ground truth. F1 score is
defined as the spatial overlap between the humanly la-
beled image and the computer-based segmented image.
Jaccard index is used to measure the similarity between
the humanly labeled image and the computer-based seg-
mented image.

5. Experimentation and Results

5.1. Experimental Setup

The proposed architecture is developed using Keras,
a python library for developing deep learning mod-
els. The implementation of the proposed model and its
weights are accessible at this link. The model is trained
using Nvidia GTX 1660 Ti. The learning rate is initiated
as 0.003. During training, the learning rate is reduced by
a factor of 0.5 when the improvement in the loss func-
tion remains below 1x10−6 for five consecutive epochs.
We stop the training process when the validation loss
does not improve for ten consecutive epochs.

5.2. Results

Tabel 2 and Tabel 3 shows tissue wise results obtained
using PanNuke and Kumar dataset. The results of the
proposed methods have been compared with NucleiSeg-
Net (Lal et al., 2021). It is observed that in terms of F1
score and Jaccard index, the proposed model has out-
performed NucleiSegNet for both of the datasets. The
proposed network has shown better performance in all
matrices for the adrenal gland, bile duct, bladder, breast,
liver, prostate, testis, and pancreas. For stomach, how-
ever, the NucleiSegNet performs better in terms of pre-
cision only. On average, the proposed architecture has
shown significantly improved performance in all perfor-
mance evaluation matrices. The significance of the re-
sults is observed in a box plot shown in Fig. 2. The
interquartile range (the colored boxes) shows a signif-
icant improvement in the average performance. The
color dots depict the outliers. It is also observed that
the proposed network significantly reduces the outliers.
Furthermore, the line inside the box represents the me-
dian. Although the maximum F1 score and Jaccard in-
dex show little improvement, the median performance
has been drastically improved.

The proposed model is also well generalized. The
performance has been evaluated on a wide range of 20
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Figure 2: Box Plot represents a comparison of the proposed network
with the best performing networks in the literature.

different tissues. The generalization performance of the
network is clearly observed in Tabel 2 and Table 3. The
visual performance of the network for various tissues
within the PanNuke dataset is shown in Fig. 3. Fig.
3 shows various histology images obtained in variable
conditions.

The proposed method has also been compared
with the top-performing existing architectures using
three different datasets (PanNuke, Kumar, and CPM
dataset). These include UNet (Ronneberger et al.,
2015), UNet++ (Ronneberger et al., 2015), DIST (Nay-
lor et al., 2019), ASPPU Net (Wan et al., 2020), SCPP-
Net (Chanchal et al., 2021), SCA-Net (Shan and Yan,
2021), and MicroNet (Rezaei et al., 2019b). Table 4
shows the detailed comparison of the proposed archi-
tecture with the existing ones. The results are reported
by taking the average of all cancer types in the specific
datasets.

6. Discussion

This section provides an in-depth discussion on the
model performance in terms of complexity, robust-
ness, and ablation studies performed upon the proposed
model.

6.1. Complexity Analysis
We have compared the complexity of the proposed

architecture with the existing literature. The proposed
architecture has a total of 9.276 million parameters. The
parameters are far much less than most of the existing
architectures. Only DIST (Naylor et al., 2019), SCPP-
Net (Chanchal et al., 2021), and ASPP UNet (Wan et al.,
2020) have fewer parameters than the proposed net-
work. The proposed method is more efficient and less
complex at the same time. The parameters comparison
is shown in Fig. 4. This comparison is necessary yet

ignored in the previous studies. The size of the WSI is
usually 100,00x100,00 pixels, meaning a more complex
algorithm and ultimately more inference time.

6.2. Robustness Analysis

The networks perform well within the standard mag-
nification range (20x and 40x) in terms of magnifica-
tion. The example of variable magnification level is
shown in Fig. 5. The network shows adequate perfor-
mance in complex or variable situations. In complex
situation such as Fig. 7, it is even extremely difficult for
a professional pathologist to identify nuclei. Still, the
proposed network performs in an acceptable range com-
pared to the state-of-the-art. The network, however, pro-
duces false-positive edges for connective tissue in some
cases. Examples of these false positives are highlighted
in blue bounding boxes in Fig. 6. For both neoplas-
tic and non-neoplastic nuclei, the network occasionally
produces false-negative at the edge pixels of the nuclei.
This could be observed in the green color in Fig. 3.
These false positives are, however, produced by other
approaches as well.

6.3. Ablation Study

We performed an ablation study in 4 stages. We
evaluated our network without spatial attention mecha-
nism, channel attention mechanism, and ResNet block,
respectively, using the largest dataset, PanNuke. We
also evaluated the model training with a cross-entropy
loss function instead of the one proposed by (Lal et al.,
2021). The results of the ablation study are shown in
Tabel 5. These results are obtained by averaging the re-
sults of cancer types in the PanNuke dataset. The abla-
tion study verifies our assumptions regarding the usage
of the dual attention mechanism, the suggested ResNet
usage, and the suggested loss function.

7. Conclusion

Computer-assisted semantic segmentation of histol-
ogy images is of great importance. It improves and fas-
tens the diagnosis process. Computer-assisted staging,
grading, classification of cancer, and recurrence pre-
diction depend upon the segmentation of cells. Exist-
ing methods lack generalization and are less accurate
in harsh conditions. This research proposes spatial-
channel attention-based UNet architecture, which uses
spatial and channel features and the ResNet blocks’ ro-
bustness to segment the target nuclei. The proposed
architecture is tested comprehensively on the most ex-
tensive available dataset. The proposed architecture is
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Table 2:
Segmentation quality metrics of the proposed architecture compared with NucleiSegNet for multi-organ PanNuke dataset.

NucliSegNet Proposed
F1 JI Recall Prec F1 JI Recall Prec

Adrenal Gland 82.16 72.23 83.02 84.61 83.51 73.94 84.52 85.01
Bile-duct 82.47 72.04 86.72 80.58 83.49 73.39 87.27 81.90
Bladder 83.79 73.83 82.56 87.02 86.44 77.34 86.61 86.81
Breast 82.66 71.51 83.49 83.15 83.23 72.27 83.88 83.62
Cervix 84.53 75.59 85.41 85.06 85.10 76.43 85.19 86.12
Colon 77.51 65.53 77.77 80.18 79.81 68.39 81.08 80.20
Esophagus 84.33 74.40 83.99 85.54 85.29 75.76 85.89 85.53
Head & Neck 81.02 69.34 77.28 89.20 86.79 75.46 86.45 88.42
Kidney 83.41 73.22 86.21 82.38 84.46 74.57 88.72 81.44
Liver 84.73 74.42 85.45 85.05 86.20 76.62 86.15 87.12
Lung 78.39 65.16 75.18 83.00 81.57 69.35 79.73 84.21
Ovarian 84.69 74.15 87.90 82.26 85.30 75.08 87.85 83.34
Pancrease 83.33 72.29 87.93 80.12 85.10 74.68 88.98 82.09
Prostate 83.07 72.16 85.56 82.15 84.29 73.83 87.04 82.67
Skin 74.27 64.31 84.68 71.71 75.11 65.87 83.05 73.87
Stomach 86.68 76.99 90.50 83.73 87.12 77.65 89.48 85.23
Testis 83.70 73.19 87.30 81.74 86.12 76.55 87.86 85.27
Thyroid 83.77 73.96 90.48 79.69 85.49 76.06 90.36 82.42
Uterus 83.78 72.71 87.52 80.96 84.23 73.38 86.97 82.27
Average 82.54 71.95 84.68 82.53 84.14 74.03 86.16 83.56

Table 3:
Segmentation quality metrics of the proposed architecture compared with NucleiSegNet for multi-organ Kumar dataset.

NucliSegNet Proposed
F1 JI Recall Prec F1 JI Recall Prec

Bladder 81.27 69.52 88.02 76.64 83.22 72.20 88.41 79.44
Breast 79.48 66.59 87.93 73.32 80.03 67.37 87.95 74.28
Colon 73.78 59.70 74.50 76.01 75.83 62.37 77.12 77.16
Kidney 81.35 68.95 88.13 75.86 81.55 69.24 87.92 76.40
Liver 78.02 64.73 79.27 79.71 78.83 65.80 79.77 80.39
Prostate 77.97 65.20 79.73 78.50 79.57 67.19 82.14 78.93
Stomach 88.33 79.46 91.59 85.56 88.76 80.12 90.15 87.64
Average 80.03 67.74 84.17 77.94 81.11 69.18 84.78 79.18
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Figure 3: Example of visual results from PanNuke dataset (Gamper et al., 2020). in variable conditions. The first row of each tissue shows the
original image; the second row shows the true labels overlayed in yellow, while the third row shows the segmentation performed by the proposed
method. In the third row, the yellow color shows true positive, the green color shows false negative, and the red color shows false positive.
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Figure 4: Complexity comparison of the proposed architecture with
the existing literature in terms of the model parameters.

Figure 5: Example of different magnification level images (to the left)
and the segmented image (to the right).

Figure 6: The model produces higher false positive edges in the case
of connecting tissues, the examples of which are highlighted within
the blue boxes.

widely generalized in terms of tissue location and a
wide range of variations in histology caused by stain
artifacts and variations in the staining process. Apart
from the maximum achieved F1 and JI, the reduction in
outliers has greatly improved the average segmentation
performance while having minimal complexity in terms
of parameters. Due to the lack of a dataset, the model
is tested for nuclei of epithelial tissue, connective/soft
tissue, and dead tissue. The future work will include the
extension to other tissue types.
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Table 4:
The table compares results obtained from DAN-NucNet with the relevant existing methods in terms of standard evaluation metrics. The results are
reported by taking the average of all cancer types in the specific dataset.

PanNuke Kumar CPM
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UNet (Ronneberger et al., 2015) 77.56 65.22 79.00 79.03 75.51 62.29 78.31 74.90 71.52 56.17 75.18 70.46
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MicroNet (Rezaei et al., 2019b) 81.32 70.17 82.71 81.16 78.30 65.34 82.18 76.74 73.26 58.36 85.85 72.40
ASPP UNet (Wan et al., 2020) 75.97 63.15 79.28 77.02 73.66 59.40 76.97 77.29 72.64 59.42 85.82 64.89
Enhanced SC-UNet (Khanh et al., 2020) 82.30 71.53 84.17 82.12 77.57 64.40 82.54 75.27 76.52 64.17 87.44 71.78
SCPP-Net (Chanchal et al., 2021) 77.36 64.70 77.73 78.81 76.35 62.57 78.76 75.65 71.56 59.78 80.43 69.01
SCA-Net (Shan and Yan, 2021) 82.31 71.69 87.19 78.85 79.14 67.92 84.65 78.12 76.29 77.96 87.61 71.91
NucleiSegNet (Lal et al., 2021) 82.54 71.95 84.68 82.53 80.03 67.74 84.17 77.94 77.13 78.18 87.57 72.44
Proposed 84.14 74.03 86.16 83.56 81.11 69.18 84.78 79.18 77.10 78.22 87.46 72.59

Figure 7: Each row in the image show example of a histology image in variable conditions along with the original labels, segmented image using
ASPP UNet, MicroNet, SCA-Net, NucleiSegNet, and proposed network, respectively.
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Table 5:
The table summarizes the ablation studies performed on the proposed
network.

Ablation studies F1 JI Prec Recall
Model performance without spatial attention 81.45 70.48 85.25 80.31
Model performance without channel attention 81.64 70.76 81.41 82.46
Model performance without ResNet blocks 83.31 72.10 86.13 81.55
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Proposed 84.14 74.03 86.16 83.56
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