
DOI: 10.1109/ICCONS.2017.8250682

https://ieeexplore.ieee.org/document/8250682

Study of an effective way of Detecting Unexpected

Permission Authorization to Mobile Apps

Manisha Patil*

Research Scholar - PhD (Computer Studies)

Symbiosis Centre for Research and Innovation, Symbiosis

International University. Pune. 412 115, Maharashtra, India.

E-mail: manishashivani@gmail.com

Prof. Dr.Dhanya Pramod**

Director/Professor

Symbiosis Centre for Information Technology (SCIT)

Hinjawadi, Pune – 411057, Maharashtra, India.

E-mail: dhanya@scit.edu

Abstract: The recent boom in Android mobile device usage

has caused a shift in the information technology and has affected

the way how information and data are stored, shared among the

mobile users. The advent of social networking applications also

demands the availability of resources that can be shared among

the authentic users. This paper reviews and compares the

available techniques and solutions for detecting Unexpected

Permission Authorization to Mobile Apps. It is observed that

malware for the android system is also growing significantly,

current solutions for detecting malware on smartphones are still

ineffective.

Keywords— Android Mobile App Security, User Privacy,

Permission check, de-compilation, Static analysis .

I INTRODUCTION

Android Smartphone OS has captured more than 80 % of
the total market share, leaving its competitors iOS, Windows
mobile OS and Blackberry far behind [1]. Gartner
Smartphone sale report 2014 reports 53.2% in Android
devices compared to the previous year [1]. The overall market
share increased to 80% from 66% compared to the past two
years, a substantial rise of 14% among the users. Ubiquitous
Internet connectivity and availability of personal information
such as contacts, messages, social network access, browsing
history , online shopping and banking credentials have
attracted the attention of malware developers towards the
mobile device in general and Android in particular.

Android malware such as premium rate SMS Trojans,
spyware, botnets, aggressive adware and privilege escalation
attack exploits reported exponential rise apart from being
distributed from the secure Google Play store and well-known
third-party marketplaces [2, 10, and 32].

Unlike the Apple app store, Google play does not verify
the uploaded apps manually. Instead, official market depends
on Bouncer [4] [19], a dynamic emulated environment to
control and protect the marketplace from the malicious app
threats.

Mobile Malware is any kind of, intrusive or annoying software
or program code designed to use a device without owner’s consent.
Malware is often distributed as a spam within a malicious attachment
or a link in an infected websites. Malware – virus, worm, Trojan,
Rootkits, botnet.

Table – I: Worldwide Device Shipment by Operating System

(Thousands of Units). Gartner (March 2014). [1]

Mobile security stack shows four different layers where
vulnerability issues can be studied such as application, operating
system, hardware and infrastructure Layer.

Fig 2: Mobile Security Stack

Application Layer security is considered for the study. It is

important to underline that evolution of malware is a continuous race
between attackers and defenders both use the same programming
methods, tools and resources either to create a malware or to develop
an intelligent malware detection mechanism.

Mobile environment threats may affect different assets like 1)
Personal data 2) Corporate Intellectual property 3) Classified
information 4) Financial assets 5) Device and service availability and
functionality 6) Personal and political reputation.

Threats in mobile environment are reported such as Data leakage
resulting from device loss or theft, an Unintentional disclosure of
data, -attacks on decommissioned devices: phishing, spyware,
network spoofing, surveillance, dialer ware, financial malware,
network congestion

https://doi.org/10.1109/ICCONS.2017.8250682

 Fig 3: Threats in a mobile environment

.

Methodologies to perform attacks against smartphones are
categorized using classes - Wireless, break- in, infrastructure based,
worm based, bot-net, user based. Attackers use possible
methodologies to perform an attack in a mobile environment to reach
different goals like privacy, sniffing, denial of service, overbilling.

II LITERATURE REVIEW

Researchers have made some work on malware detection on the
Smartphone. It laid the valid foundation for further research.
Performing application analysis is an effective way of detecting
malicious applications on smartphones. Application analysis can be
performed statically before an application is running. Markus
Miettinen [32] et al. analyzed how the malware performed malicious
activities on Smartphone and pointed out that it is an effective
protection by seeing the Smartphone system itself as a test object.
They suggested that some information should be monitored for
anomaly detection, such as operating system events, resource usage,
application-level events, and so on. Finally, they came up with a
unified intrusion detection model. But they did not propose a specific
and feasible anomaly detection scheme.

Schmidt [8] et al. proposed a solution based on monitoring events
occurring on Linux-kernel level. They use kernel system calls,
network activity events and file system logs to detect anomalies in
the system. At that time, there were no real Android devices
available, so they failed to test their system properly.

Shabtai [7] et al. proposed Adnromaly — a framework for
anomaly detection on Android smartphones. The framework
continuously monitored the information obtained from the
Smartphone. Then, it applied machine learning to classify the
collected data as benign or malicious. Yet they could not find real
malware to test their proposal. Enck et al [40] used de-compilation
and static analysis techniques to study 1100 free applications from
the official Android Market to understand a broad range of security-
related metrics associated with these applications. They discovered
that sensitive information is widely leaked in applications. For
instance, more than half of the applications include at least one

advertisement libraries that collect and send private information, e.g.
the location of the phone.

Pridgen & Wallach [34] examined a sample of 114,000 apps and
found that the number of permissions required by apps is increasing,
and consequently, posing a privacy risk to Android users.

Felt et al. [8] and Kelley et al. [18] suggested that many users
have a low comprehension of the Android permissions system – that
is the permissions system may be insufficient in providing adequate
user privacy in the hands of a novice user.

Kern & Sametinger [28] took a different approach and
recommended the use of fine-grained individual permissions control
on a per app basis. This means that each Android app would have
each of their permissions explicitly listed and the user would either
deny or allow the permission request.

Zhou et al. [43] designed a system that could control an app’s
access to sensitive permissions Berthome et al. [10] proposed a set of
two apps, comprising (1) the Security Monitor, a third party app
installed onto the device, and (2) the Security Reporter, which would
be injected into a decompiled target app. The injected app is able to
monitor the targeted app and can then report to the Security Monitor
with details such as resource requests.

Juanru, Dawu & Yuhao [27] used a similar technique of
decompiling Android apps to aid with their Android malware
research.

Xu, Saïdi & Anderson [42] developed a solution called Aurasium
that automatically repackages Android apps to have sandboxing and
policy enforcement abilities in order to enhance user privacy.

Application analysis can also be performed dynamically by
monitoring a running application. A representative example is
TaintDroid [39]. It applies dynamic taint tracking and analysis on the
usage of sensitive data on Android. Any information which comes
from a trusted application is considered to be tainted. TaintDroid
marks data coming from the “taint sources” and tracks the taint flow.
If the data, in the end are used by an untrusted application,
TaintDroid reports it as a sensitive data leak. However, TaintDroid
cannot print alert messages for many of the malware samples that we
have evaluated. Building on top of TaintDroid,

Kirin [41], an application certification for Android. Kirin
performs a permission check on the application during installation.
When a user installs an application, Kirin extracts its security
configurations and checks them against the security policy rule that it
already has. If an application fails to pass all the security policy rules,
Kirin can either delete it or alert the user.

Crowdroid [25] is a lightweight client application that monitors
system calls invoked by the target mobile application, preprocesses
the calls, and sends them to the cloud, where a clustering technique
helps determine whether the application is benign or malicious.
Increased use of Crowdroid will result in improved malware
detection, but using the approach initially might cause false positives
as the sample size is still very small. Moreover, it isn’t clear how
users will react when they’re asked to send application behavior to a
third party, and total dependence on user behavior might not produce
accurate results.

CloudAV [26] is a cloud-based antivirus file scanning
mechanism, but it lacks the features required to detect zero-days
attacks, remote exploits, and memory-resident attacks.

Paranoid Android (PA) [21], a cloud-based malware protection
technique that moves security analysis and computations to a remote
server that hosts multiple replicas of mobile phones running on
emulators. A tracer, located in the Smartphone, records all the
necessary information required to replay the mobile application’s

execution. The tracer transmits the recorded information to the cloud-
based replayer, which replays the execution in the emulator. The
replayer can deploy several security checks, such as dynamic
malware analysis, memory scanners, system call anomaly detection,
and commercial antivirus scanning, from the cloud’s ample
resources. PA uses a proxy to temporarily store inbound network
traffic information so that the phone can save energy by not sending
this data back to the server. Instead, the server can directly contact
the proxy to get the network traffic information needed to
successfully replay the execution. However, PA incurs some
significant overhead, increases the CPU load by 15 percent, and
consumes 30 percent more energy during heavyweight tasks.
Furthermore, because tracing systems implement the tracer module in
the user

 AppFence [30] implements two simple runtime mechanisms to
protect users’ privacy. The first one is data shadowing, a mechanism
that returns fake or blank data when an untrusted application requests
private data such as phone IDs and location information. The second
idea is to block an application’s communication from sending out
private information at runtime. It prevents the exhilaration of
sensitive data by intercepting calls to the network stacks to detect
when such data is written to a socket. Such offending messages are
dropped. These two approaches are phone-based solutions and can
potentially add much CPU overhead

Bugiel et al. [37] Present a security framework named
XManDroid which monitors the real-time communication between
applications and verifies the inter-process communications against a
set of pre-defined security policies. The aim is to prevent malicious
applications from exploiting transitive permission properties to
enable privilege escalation. In order to test their methodology, they
included 7 types of attacks in their dataset which cover several
possible scenarios whereby rogue applications request transitive
permissions. For future work, the authors plan to integrate the
methodology into the existing permission framework currently in use
by Android.

In the work carried out by Portokalidis et al. [22], Paranoid
Android is a security model implemented on remote servers where
identical copies of smartphones are running in a virtual environment.
A program, which resides on the device, collects all the necessary
information needed to replay the execution and transmits it to the
remote server. The information is re-executed on the virtual
smartphones. The aim is to run constant security checks on
applications while maintaining minimal computational and battery
overhead.

III CONCLUSION

The study shows, the approaches proved valuable in protecting
smart phones but they have restrictions. In particular, the Android
system has been in a dominant position in the market of Smartphone
operating system. Malware for the Android system is also growing
significantly. Therefore, it is necessary to develop a security suite for
the Android phones, such as signature-based anti-virus technology,
Smartphone firewall, access control mechanisms and lightweight
Intrusion Detection Technology.

Malware for smartphones shows the traditional features that the
malware for personal computers has, adding new threats to privacy
and security, as they leverage the peculiar characteristics of
smartphones (GPS, sensitive data like contacts book, agenda ,SMS,
microphone and camera) and limitations (small screen, reduced
resources, power supply). Current solutions for detecting malware on
smartphones are still ineffective: it urges to provide new and
successful methods and tools for contrasting the rapid spreading of
malware.

REFERENCES

[1] G. Inc., Android Smartphone Sales Report, 2014,

http://www.gartner.com/newsroom/id/2996817 (Online; Last Accessed

March 17 2015).

[2] Android Malware Genome Project,
http://www.malgenomeproject.org/(Online; Last Accessed 11th

February 2015).

[3] AppBrain, Number of applications available on Google Play,

http://www.appbrain.com/stats /number-of-android-apps

[4] Android and security: Official mobile Google blog,

http://googlemobile.blogspot.in/2012/02/android-and-security.html

(Online; Last Accessed 15th October 2014).

[5] A.-D. Schmidt and S. Albayrak, “Malicious Software for Smartphones,”

Technische Universit¨at Berlin - DAI-Labor, Tech. Rep. TUBDAI

02/08-01, February 2008, http://www.dai-labor.de.

[6] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “Survey of

Mobile Malware in the Wild,” 2011. [Online].

Available:http://www.eecs.berkeley.edu/∼afelt/malware.html

[7] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael

Weiss. “Andromaly: a behavioral malware detection framework for
android devices”. Journal of Intelligent Information Systems, pages 1–

30, 2011. 10.1007/s10844-010-0148-x

[8] Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Jan Clausen, Kamer Ali

Y¨uksel, Osman Kiraz, Ahmet Camtepe, and Sahin Albayrak.
“Enhancing security of linux-based android devices”. In in Proceedings

of 15th International Linux Kongress. Lehmann, October.2008.

[9] Backdoor.AndroidOS.Obad.a,
http://contagiominidump.blogspot.in/2013/06/ backdoorandroidosobada

.html (Online; Last Accessed December 252014).

[10] P. Berthome, T. Fecherolle, N. Guilloteau & JF. Lalande, “Repackaging
Android Applications for Auditing Access to Private Data”, ARES 2012,

pp. 388-396.

[11] C. A. Castillo, Android Malware Past, Present, and Future, Tech. rep.,

Mobile Working Security Group McAfee (2012).

[12] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, W. Lee, The Core of

the Matter: Analyzing Malicious Traffic in Cellular Carriers, in: Proc.

NDSS, Vol. 13, pp. 1–16.

[13] Carat: Collaborative Energy Diagnosis, http://carat.cs.berkeley.edu/

(Online; Last Accessed December 25 2014).

[14] E. Chin, A. P. Felt, K. Greenwood and D. Wagner, "Analyzing inter-

application communication in Android," Analyzing inter-application

communication in android., pp. 239-252, 2011.

[15] Fakedefender.B - Android Fake Antivirus,

http://contagiominidump.blogspot.in/2013/11 /fakedefenderb-

androidfake-antivirus.html (Online; Last Accessed December 25 2013).

[16] Fake Netxflix - Android trojan info stealer,

http://contagiominidump.blogspot.in/2011/10/fake-netxflix-

adtroidtrojan- info.html (Online; Last Accessed 11th February).

[17] F. Shahzad, M. A. Akbar, M. Farooq, A Survey on recent advances in

malicious applications Analysis and Detection techniques for

Smartphones.

[18] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin & D. Wagner, “Android

permissions: User attention, comprehension, and behavior”, SOUPS

2012, p. 3.

[19] Google bouncer : Protecting the Google play

market,http://blog.trendmicro.com/trendlabs-security-intelligence/a-
lookat-google-bouncer/ (Online; Last Accessed 15th October 2014).

13

[20] G. Andre, P. Ramos, BOXER SMS Trojan, Tech. rep., ESET Latin

American Lab (2013).

[21] G. Portokalidis et al., “Paranoid Android: Versatile Protection for
Smartphones,” Proc. Ann. Computer Security Applications Conf.

(ACSAC 10) ACM, 2010, pp. 347-356.

 [22] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, "Paranoid

Android: versatile protection for smartphones," in 'Proceedings of the

http://contagiominidump.blogspot.in/2013/06/
http://carat.cs.berkeley.edu/
http://contagiominidump.blogspot/
http://contagiominidump.blogspot.in/2011/10/fake-netxflix-adtroidtrojan-
http://contagiominidump.blogspot.in/2011/10/fake-netxflix-adtroidtrojan-

26th Annual Computer Security Applications Conference', Austin,

Texas, 2010, pp. 347-356.

[23]H. Dediu, D. Schmidt, and R. Salle. (Visited March 2015)

Asymco.[Online]. Available: http://www.asymco. Com/

[24] H. T. T. Truong, E. Lagerspetz, P. Nurmi, A. J. Oliner, S. Tarkoma, N.

Asokan, S. Bhattacharya, The Company You Keep: Mobile Malware
Infection Rates and Inexpensive Risk Indicators, arXiv

preprintarXiv:1312.3245.

 [25] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
Based Malware Detection System for Android,” Proc. ACM Workshop

Security and Privacy in Mobile Devices (SPMD 11), ACM, 2011, pp.

15-26.

[26] J. Oberheide, E. Cooke, and F. Jahanian, “CloudAV: N-Version

Antivirus in the Network Cloud,” Proc. 17th Conf. Security Symp.

Usenix, 2008, pp. 91-106

[27] L. Juanru, G. Dawu & L. Yuhao, “Android Malware Forensics:

Reconstruction of Malicious Events”, ICDCSW 2012, pp. 552-558.

[28] M. Kern, & J. Sametinger, “Permission Tracking in Android”,

UBICOMM 2012, pp. 148-155.

[29] L. Inc., State of Mobile Security 2012, Tech. rep., Lookout Mobile

Security (2012).

[30] L. Inc., Current World of Mobile Threats, Tech. rep., Lookout Mobile

Security (2013).

[31] M. Hypponen, “Mobile Security Review September 2010,” F-Secure

Labs, HelsinkiFinland, Tech. Rep., September 2010.

[32]M. Miettinen and P. Halonen. “Host-based intrusion detection for

advanced mobile devices”. 2006.

[33] P. Hornyack, S. Han, J. Jung, S. Schechter and D. Wetherall, "These
Aren’t the Droids You’re Looking For: Retrofitting Android to Protect

Data from," the 18th ACM conference on Computer and

communications security (CCS), pp. 639-652, 2011

[34] T. Book, A. Pridgen & DS. Wallach, “Longitudinal Analysis of Android

Ad Library Permissions”, arXiv preprint arXiv: 1303.0857, 2013.

[35] S. Shekhar, M. Dietz & D.S. Wallach, “Adsplit: Separating smartphone

advertising from application”, CoRR, abs/1202.4030, 2013.

[36] Spitmo vs Zitmo: Banking Trojans Target Android,

https://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-bankingtrojans-

target-android (Online; Last Accessed 11th February).

[37] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and

Ahmad-Reza Sadeghi, "XManDroid: A New Android Evolution to
Mitigate Privilege Escalation Attacks," Technical Report, Technische

Universit Darmstadt2011.

[38] W. Zhou, Y. Zhou, X. Jiang, P. Ning, Detecting Repackaged Smartphone
Applications in Third-party Android Marketplaces, in: Proceedings of

the second ACM conference on Data and Application Security and
Privacy, CODASPY ’12, ACM, New York, NY, USA, 2012, pp.317–

326. doi:10.1145/2133601.2133640. URL

http://doi.acm.org/10.1145/2133601.2133640

 [39] W. Enck, P. Gilbert, B.-G. Chun, L. Cox, J. Jung, P. McDaniel and A.

Sheth, "Taintdroid: an information-flow tracking system for real-time
privacy monitoring on smartphones," In 9th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), pp. 1-6, 2010.

[40] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of Android

application security," 20th Usenix Security Symposium, 2011.

[41]W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” Proc. 16th ACM Conf. Computer and

Communications Security (CCS 09), ACM, 2009, pp. 235-245.

[42] Xu R., H. Saïdi & R. Anderso, 'Aurasium: Practical policy enforcement
for android applications', 21st USENIX conference on Security

symposium, 2012, pp. 27-27.

[43] Y. Zhou, X. Zhang, X. Jiang & V. Freeh, “Taming information-stealing

smartphone applications (on Android)”, TRUST 2011, pp. 93-107

Table II: Comparative study of existing techniques and solutions for Mobile Apps

Tool / Author Purpose Method Remark

Markus Miettinen [29] et al. some information monitored for
anomaly detection, such as operating

system events, resource usage,
application-level events

a unified intrusion detection
model

did not propose a specific and
feasible anomaly detection scheme

Schmidt [8] et al. use kernel system calls, network
activity events and file system logs to

detect anomalies in the system

solution based on
monitoring events

no real Android devices available so
failed to test system

Shabtai [7] et al
Adnromaly

machine learning to classify data a framework for anomaly
detection

Could not find real malware to test

proposal.

Enck et al [34] to understand a broad range of

security-related metrics

de-compilation and static

analysis techniques

discovered that sensitive information

is widely leaked

TaintDroid [33] sensitive data on Android dynamic taint tracking and
analysis

cannot print alert messages for many
of the malware samples

Kirin[35], Permission check on the application
during installation.

application certification
Delete app or alert the user

Crowdroid[23] monitors system calls preprocess the

calls and sends them to the cloud

clustering technique dependence on user behavior

CloudAV[24] file scanning cloud-based antivirus It lacks the features required to
detect zero-days attacks, remote
exploits, and memory-resident

attacks.

Paranoid Android (PA)[19] moves security analysis and
computations to a remote server

cloud-based malware
protection

increases the CPU load by 15
percent, and consumes 30 percent

more energy during heavyweight
tasks

AppFence [30] data shadowing,
block an application’s

communication from sending out
private information at runtime

protect users’ privacy phone-based solutions and can

potentially add much CPU overhead

Bugiel et al. [31]

XManDroid

monitors the real-time

communication between applications

security framework Cover several possible scenarios

against a set of pre-defined security
policies.

Portokalidis et al. [20] remote servers Paranoid Android is a
security model

Constant security checks on

applications while maintaining

minimal computational and battery

overhead.

https://blogs.mcafee.com/mcafee-labs/spitmo-vs-zitmo-bankingtrojans-
http://doi.acm.org/10.1145/2133601.2133640

	References

