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Abstract: We pose various congruences on the integers of form 6𝑛 + 1, 𝑛 ∈ 𝑍+, which may 

encourage younger number theorist to do research in number theory and settled new dimension in 

this field. We observed that there are only three prime numbers, namely 7, 37, and 1297 of form 

6𝑛 + 1, 𝑛 ∈ 𝑍+,  and no one Fermat numbers attains this form. Moreover, these integers end with 

7, like Fermat numbers 𝐹𝑛, 𝑛 ≥ 2. Also, we discussed some congruences with number theoretic 

functions 𝜎, 𝜑  and Möbious function 𝜇. 
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Introduction: At the elementary level, the theory of numbers deals with properties of integers and 

especially with the positive integers 1, 2, 3, … … … (also known as the natural numbers), and 

primes are the nucleus of number theory. Primes and forms of integers have been studied for over 

two thousand years at the time of Euclid. The Euclid theorem provided various consequences, like 

that there are an infinite number of primes of form 4k+3 [3]. Multitude problems on primes and 

forms of integers are still open until now. The famous Goldbach conjecture ([4], [11]) for even 

integers, initially tells that every even integer 𝑛 > 2 can be represented as a sum of two primes. 

The twin prime conjecture ([1], [6], [12], [17]), assertion that there are infinitely many primes that 

differ by 2. In the published paper [10] the author proved that all the integers of the form 𝑝6 + 6𝑝, 

with prime 𝑝 ≥ 2 are composite. After the studies of above cited work and various literature 

referenced in ([2], [5], [7], [8], [9], [10], [11], [13], [14], [15], [16]) on various conjectures 

concerned with primes, the form of integers, numbers of special forms like Fermat numbers and 

number theoretic functions have great importance in the field of number theory. This study aims 

to provide some congruences on the integers of the form 6𝑛 + 1, 𝑛 ∈ 𝑍+,  with number theoretic 

functions 𝜎, 𝜑 , Möbious function 𝜇. Prominently we have that all numbers 6𝑛 + 1, 𝑛 ∈ 𝑍+, end 

with 7 like the Fermat numbers 𝐹𝑛 = 22𝑛
+ 1, 𝑛 ≥ 2.  
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Theorem (1): If the integer 𝑛 = 4𝑘, where 𝑘 is an odd integer, then congruences 6𝑛 + 1 ≡

0(1297), and 64 ≢ −1(𝑚𝑜𝑑 (1297)2)  always hold. 

Proof: Since  64 ≡ −1(𝑚𝑜𝑑 1297), and 64 ≢ −1(𝑚𝑜𝑑 (1297)2). Consider for 𝑛 = 4𝑘, where 

𝑘 is odd, then clearly, the congruences 6𝑛 + 1 ≡ 0(1297), and 64 ≢ −1(𝑚𝑜𝑑 (1297)2)  always 

hold.  

Theorem (2): If the integer 𝑛 = 4. (2𝑘) , where 𝑘 is an odd integer, then 6𝑛 + 1 ≡ 0(17)  and 

64 ≢ −1(𝑚𝑜𝑑 (17)2)  always hold. 

Proof: Since  64.(2𝑘) ≡ −1(𝑚𝑜𝑑 17) . Consider for 𝑛 = 4. (2𝑘), where 𝑘 is odd, then clearly, the 

congruences 6𝑛 + 1 ≡ 0(17) 6𝑛 ≢ −1(𝑚𝑜𝑑 (17)2)  always hold.  

Remark (1): The chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 holds exactly one prime.                  

Remark (2): The chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 has no Fermat number, 

moreover these are composite numbers end with 7.  

Remark (3): The chain of integers of the form  68(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 has no prime.                   

Conjecture (1): Each member of the chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 must 

hold the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(64(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍+, 𝑙 ≥ 2            (1.1.1)  

𝜑(64(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 4             (1.1.2)  

𝜑[𝜑(64(2𝑘+1) + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2             (1.1.3) 

𝜇 (𝜎(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍+            (1.1.4) 

𝜇 (𝜑(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (1.1.5) 

𝜇(𝜑[𝜑(64(2𝑘+1) + 1)]) = 0, 𝑘 ∈ 𝑍0            (1.1.6) 

Proof: Consider theorem (1) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (1.1.1) to (1.1.6) must hold. 

Conjecture (2): Each member of the chain of integers of the form  68(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 must 

hold the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(68(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2            (2.1.1)  

𝜑(68(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 4             (2.1.2)  



𝜑[𝜑(68(2𝑘+1) + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2             (2.1.3) 

𝜇 (𝜎(68(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (2.1.4) 

𝜇 (𝜑(68(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (2.1.5) 

𝜇(𝜑[𝜑(68(2𝑘+1) + 1)]) = 0, 𝑘 ∈ 𝑍0            (2.1.6) 

Proof: Consider theorem (2) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (2.1.1) to (2.1.6) must hold. 

Theorem (3): If the integer 𝑛 = 4𝑘 , where 𝑘 is an odd integer, then congruences 6𝑛 + 1 ≡

0(1297), and 64 ≢ −1(𝑚𝑜𝑑 (1297)2)  always hold. 

Proof: Since  64 ≡ −1(𝑚𝑜𝑑 1297), and 64 ≢ −1(𝑚𝑜𝑑 (1297)2). Consider for 𝑛 = 4𝑘, where 

𝑘 is odd, then clearly, the congruences 6𝑛 + 1 ≡ 0(1297), and 6𝑛 ≢ −1(𝑚𝑜𝑑 (1297)2)  always 

hold.  

Theorem (2): If the integer 𝑛 = 4. (2𝑘) , where 𝑘 is an odd integer, then 6𝑛 + 1 ≡ 0(17)  and 

64 ≢ −1(𝑚𝑜𝑑 (17)2)  always hold. 

Proof: Since  64.(2𝑘) ≡ −1(𝑚𝑜𝑑 17) . Consider for 𝑛 = 4. (2𝑘), where 𝑘 is odd, then clearly, the 

congruences 6𝑛 + 1 ≡ 0(17) 6𝑛 ≢ −1(𝑚𝑜𝑑 (17)2)  always hold.  

Remark (1): The chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 has exactly one prime.                   

Remark (2): The chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 has no Fermat number, 

moreover these are composite numbers end with 7.  

Remark (3): The chain of integers of the form  68(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 has no prime.                   

Conjecture (1): Each member of the chain of integers of the form  64(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 must 

hold the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(64(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍+, 𝑙 ≥ 2            (1.1.1)  

𝜑(64(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 4             (1.1.2)  

𝜑[𝜑(64(2𝑘+1) + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2             (1.1.3) 

𝜇 (𝜎(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍+            (1.1.4) 

𝜇 (𝜑(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (1.1.5) 

𝜇(𝜑[𝜑(64(2𝑘+1) + 1)]) = 0, 𝑘 ∈ 𝑍0            (1.1.6) 



Proof: Consider theorem (1) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (1.1.1) to (1.1.6) must hold. 

Conjecture (2): Each member of the chain of integers of the form  68(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 must 

hold the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(68(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2            (2.1.1)  

𝜑(68(2𝑘+1) + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 4             (2.1.2)  

𝜑[𝜑(68(2𝑘+1) + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2             (2.1.3) 

𝜇 (𝜎(68(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (2.1.4) 

𝜇 (𝜑(68(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (2.1.5) 

𝜇(𝜑[𝜑(68(2𝑘+1) + 1)]) = 0, 𝑘 ∈ 𝑍0            (2.1.6) 

Proof: Consider theorem (2) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (2.1.1) to (2.1.6) must hold. 

Theorem (3): If the integer 𝑛 = 4𝑘 + 1 , where 𝑘 ∈ 𝑍0, then congruence 6𝑛 + 1 ≡ 0(7), always 

hold, but the congruence  6𝑛 + 1 ≢ 0(𝑚𝑜𝑑 (7)2)  not necessarily hold. 

Proof: Since  61 ≡ −1(𝑚𝑜𝑑 7), and 61 ≢ −1(𝑚𝑜𝑑 (7)2). Consider for 𝑛 = 4𝑘 + 1, where 𝑘 ∈

𝑍0, then clearly, the congruences 6𝑛 + 1 ≡ 0(𝑚𝑜𝑑 7) ), always hold. Since 𝑛 = 4 × 5 + 1 and 

6𝑛 + 1 ≡ 0(𝑚𝑜𝑑 (7)2)  hold. This implies that 6𝑛 + 1 ≢ 0(𝑚𝑜𝑑 (7)2)  not necessarily hold. 

Remark (4): The chain of integers of the form  64𝑘+1 + 1, 𝑘 ∈ 𝑍0 has exactly one prime.                   

Remark (5): The chain of integers of the form  64𝑘+1 + 1, 𝑘 ∈ 𝑍0 has no Fermat number, 

moreover these are composite numbers end with 7.  

Remark (6): The chain of integers of the form  67(2𝑘+1) + 1, 𝑘 ∈ 𝑍0 satisfies the congruence 

67(2𝑘+1) + 1 ≡ 0(𝑚𝑜𝑑 (7)2)  .                     

Conjecture (3): Each member of the chain of integers of the form  64𝑘+1 + 1, 𝑘 ∈ 𝑍0 must hold 

the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(64𝑘+1 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2            (3.1.1)  

𝜑(64𝑘+1 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 1             (3.1.2)  

𝜑[𝜑(64(2𝑘+1) + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙 ≥ 1, 𝑚 ≥ 0             (3.1.3) 



𝜇 (𝜎(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍0            (3.1.4) 

𝜇 (𝜑(64(2𝑘+1) + 1)) = 0, 𝑘 ∈ 𝑍+            (3.1.5) 

𝜇(𝜑[𝜑(64(2𝑘+1) + 1)]) = 0, 𝑘 ∈ 𝑍+            (3.1.6) 

Proof: Consider theorem (3) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (3.1.1) to (3.1.6) must hold. 

Theorem (4): If the integer 𝑛 = 4𝑘 + 2 , where 𝑘 ∈ 𝑍0, then congruences 6𝑛 + 1 ≡ 0(37), and 

6𝑛 + 1 ≢ 0(𝑚𝑜𝑑 (37)2)  always hold. 

Proof: Since  62 ≡ −1(𝑚𝑜𝑑 37), and 62 ≢ −1(𝑚𝑜𝑑 (37)2). Consider for 𝑛 = 4𝑘 + 2, where 

𝑘 ∈ 𝑍0, then clearly, the congruences 6𝑛 + 1 ≡ 0(𝑚𝑜𝑑 37) ), and 6𝑛 + 1 ≢ −1(𝑚𝑜𝑑 (37)2)  

always hold.  

Remark (6): The chain of integers of the form  64𝑘+2 + 1, 𝑘 ∈ 𝑍0 holds exactly one prime.                   

Remark (7): The chain of integers of the form  64𝑘+2 + 1, 𝑘 ∈ 𝑍0 holds no Fermat number, 

moreover these are composite numbers end with 7.  

Conjecture (4): Each member of the chain of integers of the form  64𝑘+2 + 1, 𝑘 ∈ 𝑍0 must hold 

the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(64𝑘+2 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍+, 𝑙 ≥ 2            (4.1.1)  

𝜑(64𝑘+2 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2             (4.1.2)  

𝜑[𝜑(64𝑘+2 + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2             (4.1.3) 

𝜇(𝜎(64𝑘+2 + 1)) = 0, 𝑘 ∈ 𝑍+            (4.1.4) 

𝜇(𝜑(64𝑘+2 + 1)) = 0, 𝑘 ∈ 𝑍0            (4.1.5) 

𝜇(𝜑[𝜑(64𝑘+2 + 1)]) = 0, 𝑘 ∈ 𝑍0            (4.1.6) 

Proof: Consider theorem (4) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (4.1.1) to (4.1.6) must hold. 

Theorem (5): If the integer 𝑛 = 4𝑘 + 3 , where 𝑘 ∈ 𝑍0, then congruence 6𝑛 + 1 ≡ 0(𝑚𝑜𝑑 7), 

always hold but the congruence  6𝑛 + 1 ≢ 0(𝑚𝑜𝑑 (7)2)  not necessarily hold. 

Proof: Since  63 ≡ −1(𝑚𝑜𝑑 7), and 63 ≢ −1(𝑚𝑜𝑑 (7)2). Consider for 𝑛 = 4𝑘 + 3, where 𝑘 ∈

𝑍0, then clearly, the congruence 6𝑛 + 1 ≡ 0(𝑚𝑜𝑑 7) ), always hold. Since 𝑛 = 7 = 4(1) + 3 



then, 67 + 1 ≡ 0(𝑚𝑜𝑑 (7)2)  hold (as in remark 6). Consequently, we have the congruence  6𝑛 +

1 ≢ 0(𝑚𝑜𝑑 (7)2)  not necessarily hold.  

Remark (8): The chain of integers of the form  64𝑘+3 + 1, 𝑘 ∈ 𝑍0 holds no prime.                   

Remark (9): The chain of integers of the form  64𝑘+3 + 1, 𝑘 ∈ 𝑍0 holds no Fermat number, 

moreover these are composite numbers end with 7.  

Conjecture (5): Each member of the chain of integers of the form  64𝑘+3 + 1, 𝑘 ∈ 𝑍0 must hold 

the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(64𝑘+3 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2            (4.1.1)  

𝜑(64𝑘+3 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2             (4.1.2)  

𝜑[𝜑(64𝑘+3 + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2             (4.1.3) 

𝜇(𝜎(64𝑘+3 + 1)) = 0, 𝑘 ∈ 𝑍+            (4.1.4) 

𝜇(𝜑(64𝑘+3 + 1)) = 0, 𝑘 ∈ 𝑍0            (4.1.5) 

𝜇(𝜑[𝜑(64𝑘+3 + 1)]) = 0, 𝑘 ∈ 𝑍0            (4.1.6) 

Proof: Consider theorem (5) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (4.1.1) to (4.1.6) must hold. 

Remark (8): The chain of integers of the form  66𝑘+3 + 1, 𝑘 ∈ 𝑍0 satisfies the congruence 

68𝑘+7 + 1 ≡ 0(𝑚𝑜𝑑 31)  .                     

Remark (9): The chain of integers of the form  66𝑘+3 + 1, 𝑘 ∈ 𝑍0 holds no Fermat number, 

moreover these are composite numbers end with 7.  

Conjecture (6): Each member of the chain of integers of the form  66𝑘+3 + 1, 𝑘 ∈ 𝑍0 must hold 

the following congruences with respect to number theoretic functions 𝜎, 𝜑  and Möbious 

function 𝜇. 

𝜎(66𝑘+3 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 8            (5.1.1)  

𝜑(66𝑘+3 + 1) ≡ 0(𝑚𝑜𝑑 2𝑙3𝑚), 𝑘 ∈ 𝑍0, 𝑙, 𝑚 ≥ 2             (5.1.2)  

𝜑[𝜑(66𝑘+3 + 1)] ≡ 0(𝑚𝑜𝑑 2𝑙), 𝑘 ∈ 𝑍0, 𝑙 ≥ 2             (5.1.3) 

𝜇(𝜎(66𝑘+3 + 1)) = 0, 𝑘 ∈ 𝑍+            (5.1.4) 

𝜇(𝜑(66𝑘+3 + 1)) = 0, 𝑘 ∈ 𝑍0            (5.1.5) 

𝜇(𝜑[𝜑(66𝑘+3 + 1)]) = 0, 𝑘 ∈ 𝑍0            (5.1.6) 



Proof: Consider remark (8) and recall the definition of number theoretic functions 𝜎, 𝜑  and 

Möbious function 𝜇. Then we find that the congruences (5.1.1) to (5.1.6) must hold. 

Conclusion: We see that all numbers of form 6𝑛 + 1, 𝑛 ∈ 𝑍+, end with 7 like the Fermat numbers 

𝐹𝑛 = 22𝑛
+ 1, 𝑛 ≥ 2, but no Fermat numbers reach such form. Only three primes 7, 37, and 1297 

exist in this form. Mostly members of the string of the form 6𝑛 + 1, 𝑛 ∈ 𝑍+, of integers hold 

beautiful congruences with number theoretic functions 𝜎, 𝜑  and Möbious function 𝜇. 
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