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I.     INTRODUCTION 

Cancer stem cells (CSCs), or cancer initiating cells, 

are a small population of cancer cells essential for 

tumor initiation, maintenance, metastasis, and 

recurrence, as well as having the ability to self-renew, 

proliferate, and differentiate into "heterogeneous 

lineages" of cancer cells [1-10]. CSCs are 

responsible for the chemoresistance, recurrence, and 

metastasis of tumors [11-13]. CSCs were first 

identified in human acute myeloid leukemia [14] and 

have also been identified in many other human solid 

tumors, such as breast [15], brain [16], ovarian [17], 

colon [18], skin [19], prostate [20], pancreatic [21], 

liver [22], and lung carcinomas [23], etc. CSCs form 

“niches” in the tumor microenvironment (TME), 

which mainly contains fibroblasts, immune cells, 

mesenchymal cells, endothelial cells, and 

extracellular matrix [24-27]. The niche is required 

for their survival and controls the self-renewal and 

differentiation of CSCs, similar to normal stem cells 

[28-30]. CSCs modulate their TME to escape 

immune detection through different mechanisms 

[31], and their ability to differentiate into 

heterogeneous lineages of cancer cells has been 
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demonstrated by many experimental models [32, 33]. 

CSCs avoid elimination by natural killer (NK) cells 

and cytotoxic T cells through various immune 

modulation mechanisms [34-36]. The CSCs of many 

tumors resist NK cell killing due to an 

“immunosuppressive” microenvironment [37, 38]. 

The tumor microenvironment weakens cytotoxic T 

cell function, reducing “immunogenicity” [39-41]. 

Treating cancers through the induction of 

differentiation has been an attractive and practical 

alternative to killing them through cytotoxicity [42-

44]. However, the mechanisms responsible for 

differentiation vary among different tumor types 

[45-47]. Moreover, clinical studies reveal that CSCs 

are less tumorigenic or not tumorigenic at all after 

differentiation [48].  

Stem cell therapy is a feasible clinical practice for 

the treatment of many “incurable degenerative 

diseases” [49], such as hematopoietic diseases [50], 

diabetes [51], cancer [52], eye diseases [53], stroke 

[54], neurodegenerative disorders [55], joint diseases 

[56], cardiovascular diseases [57], autoimmune 

diseases [58], and blistering skin diseases [59], etc. 

Based on stem cells' capacity to divide indefinitely 

and their functional differentiation into any type of 

tissue, the discovery of stem cells has offered a 

potential treatment for many incurable degenerative 

diseases, restoring organ function [60-64]. However, 

current stem cell therapies face limitations such as 

limited stem cell sources, extreme time consumption 

for autologous cell therapy, immune rejection upon 

allogeneic transplantation, ethical issues concerning 

embryonic stem cell (ESC) application, tumor 

formation, and "epigenetic defects," necessitating 

new strategies [65-72]. Allogeneic induced 

pluripotent stem cells (iPSCs) have been used for 

disease treatment, but their prolonged somatic cell 

reprogramming and tumor formation make them 

challenging for stem cell-based therapies [73, 74]. 

Furthermore, extended use of immunosuppressive 

medications in allogeneic iPSC therapy has a greater 

tendency to cause many side effects [75, 76]. 

Tissue regeneration gives rise to new tissues in 

order to restore damaged tissues' function [77-79]. 

CSCs, similar to iPSCs, retain characteristics 

essential for tissue regeneration such as high 

capability for self-renewal, “pluripotency,” 

differentiation potential, and a high level of 

proliferation [80-88]. Interestingly, new connections 

have been discovered between iPSC generation and 

tumor cell plasticity [89]. However, the low 

efficiency of cancer cell reprogramming with 

pluripotent factors limits the use of “cancer-iPSCs” 

in stem cell-based therapies [90, 91]. 

Extracellular matrix (ECM) provides a convenient 

environment that supports cell expansion and tissue 

formation [92, 93]. 3D scaffolds enable rapid tissue 

repair using an artificial ECM environment [94, 95]. 

3D culture methods vary based on whether they 

include scaffolds or not [96]. Effective 3D cell 

scaffold methods for enriching CSCs are needed due 

to limitations in existing methods [97]. 

The unique properties of CSCs, including self-

renewal, pluripotency, immune modulation, and the 

ability to differentiate into heterogeneous lineages of 

cancer cells, offer novel strategies for the application 

of allogeneic CSCs to a large population for disease 

modeling, drug discovery, and the revolution of 

economically viable stem cell-based therapy, which 

could significantly reduce immune rejection. 

However, further clinical studies are required to 

ensure efficient effects in vitro and in vivo. In fact, 

normalization of CSC differentiation can be 

activated in the future to treat multiple incurable 

degenerative diseases. 

II. CANCER STEM CELLS ARE QUALIFIED 

STEM CELL CANDIDATES FOR TISSUE 

REGENERATION 

Tissue regeneration gives rise to new tissues in 

order to restore damaged tissues’ function [98, 99]. 

The high proliferative and differentiation capacities 

of stem cells are crucial for treating various incurable 

degenerative diseases and injuries through 

differentiation into mature cells [100-102]. Scientists 

are investigating novel ways to improve stem cell 

therapy for tissue regeneration [103]. Tissue 

regeneration and “tumorigenesis” have common 

characteristics that differ slightly, whereas tissue 

regeneration is misused by cancer cells [104].  

Self-renewal involves stem cells dividing to 

produce daughter cells with identical prospects of 

development, enabling excellent replication while 

maintaining vast developmental and replicative 

capacity [105]. Stem cell self-renewal is crucial for 

effective tissue regeneration [106]. Stem cells 
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replicate and give rise to duplicate cells of the 

original cells [107]. The self-renewal and 

differentiation of stem cells are determined by 

signals received from stem cell niches [108-110]. 

Similar to normal stem cells, the CSC niche governs 

the self-renewal and differentiation properties of 

CSCs [111]. Optimized self-renewal in cancer stem 

cells is crucial for effective cell development, similar 

to tissue regeneration [112]. 

Many tumor CSCs retain pluripotency, the ability 

of individual cells to differentiate into all cell types 

of the adult human body, regulated by the core 

transcriptional factors octamer-binding transcription 

factor 4 (OCT4), sex-determining region Y-box 2 

(SOX2), and homeobox protein NANOG (NANOG) 

[113-117]. Human pluripotent stem cells, such as 

ESCs and iPSCs, can differentiate into all cell types, 

providing unprecedented opportunities for cell 

therapies for the treatment of incurable degenerative 

diseases and injuries [118, 119]. ESCs harvested 

from pre-implantation embryos have the potential to 

differentiate into any cell type derived from the three 

germ layers of ectoderm, mesoderm, and endoderm 

[120-122]. Furthermore, iPSCs can be generated 

from various differentiated cell types through the 

expression of a set of defined transcription factors 

[123].  In 2006, Takahashi and Yamanaka 

discovered that somatic cells could be 

reprogrammed into a pluripotent state involving four 

transcription factors, OCT4, SOX2, c-MYC, and 

Krüppel-like factor 4 (KLF4), and that these 

reprogrammed iPSCs were similar to human ESCs 

[124-126]. Tumorigenesis exhibit similarities 

between embryonic development and the ability of 

ESCs, and CSCs to differentiate into heterogeneous 

lineages of cells [127]. Cancer maturation involves 

proliferation through transformed protein expression 

and signaling pathways, promoting the survival and 

proliferation of premature CSCs [128-131]. Thus, 

pluripotent stem cells such as ESCs, iPSCs, and 

CSCs share similarities between self-renewal, tumor 

formation, rapid proliferation, and cellular plasticity 

[132-135].  

Stem cell plasticity involves cells' ability to 

flexibly change their characteristics, which is 

essential for tissue regeneration and the 

differentiation of stem cells, whereas CSC plasticity 

is regulated by tumor microenvironmental signals, 

playing a crucial role in therapeutic resistance, tumor 

relapse, and metastasis [136-141]. Hence, 

modulating cell plasticity in order to obtain 

differentiated cells of interest has caught the 

attention of scientists [142, 143]. 

Epithelial-to-mesenchymal transition (EMT) is a 

genetic process involving epithelial cells 

transforming into mesenchymal phenotypes, 

impacting embryonic development, tissue 

regeneration, tumor progression, and therapy 

resistance, resulting in invasion and metastasis of 

tumors [144-147]. iPSC generation from somatic 

cells involves mesenchymal-to-epithelial transition, 

the reverted process of  EMT [148, 149]. Evidence 

suggests cancer cells retain tumor-initiating potential 

due to their plasticity modulation, which supports 

EMT mechanisms [150]. Clinical studies show that 

EMT is associated with tissue regeneration in several 

tissue models [151, 152]. Hence, there is a tangential 

connection between tissue regeneration and 

tumorigenesis [153]. 

Ensuring cells thrive in a conducive environment 

with cells, scaffolds, and growth factors for 

proliferation and differentiation is vital to tissue 

regeneration [154-158]. Repair of injured tissue 

involves the production of extracellular matrix 

components, which are restored over time to mimic 

normal tissue, modulating the cellular processes for 

tissue reconstruction [159]. ECM signals cells, 

regulating proliferation, migration, and 

differentiation; thus, tissue formation and 

regeneration heavily rely on cellular interaction with 

ECM [160]. Extracellular matrix scaffolds promote 

tissue-specific remodeling and repair in various 

organs, fostering a regenerative microenvironment 

and functional reconstruction [161-163]. 3D culture 

methods vary based on whether they include 

scaffolds or not [164, 165]. 3D scaffolds enable rapid 

tissue repair using an artificial ECM environment 

[166].  

A precise in vitro and in vivo demonstration of 

tissue of interest is under development based on 3D 

culture models in order to imitate extracellular 

matrix and provide an appropriate niche for CSC 

enrichment in various cancer cell lines, such as 

cholangiocarcinoma [167], lung carcinoma [168], 

colorectal cancer [169], acute myeloid leukemia 

[170], glioblastoma [171], hepatocellular carcinoma 
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[172], melanoma [173], breast [174], prostate [175], 

neuroblastoma [176], ovarian cancer [177], etc. 3D 

culture models are more favorable than two-

dimensional culture models, but due to variations in 

"biomaterials," "manufacturing methods," and tumor 

heterogeneity, the development of a common 3D 

culture model demonstrating all tumor niches is 

uncertain [178-180]. And also, it is crucial to 

advance current knowledge about various tumor 

differentiation mechanisms [181, 182]. 

 

III. NORMAL CELL DIFFERENTIATION 

POTENTIAL OF CANCER STEM CELLS 

Differentiation therapy offers promising cancer 

treatment for malignant cells with tumorigenicity 

reduction rather than cytotoxic lysis [183]. CSCs are 

naturally capable of differentiation into 

heterogenous lineages of tumor cells and progress 

through a decreased ability to differentiate into a 

normal cell state [184]. 

Differentiation therapy induces cancer cells to 

differentiate into benign or normal cells [185, 186]. 

CSC differentiation therapy involves tumorigenic 

CSC differentiation into low-tumorigenic stem cells 

or mature cells, reducing the “CSC pool” for cancer 

eradication [187, 188]. 

Solid tumor differentiation is induced by 

differentiation inducers both in vitro and in vivo 

[189]. Currently, leukemia treatment is mainly 

focused on leukemic cell differentiation with various 

differentiation inducers [190]. All trans-retinoic acid 

induces differentiation, which transforms acute 

promyelocytic leukemia into mature granulocytes 

[191]. Melanoma cells have the capacity to 

differentiate into "mesenchymal lineages" [192]. 

Differentiation therapy for liver cancer involves 

altering hepatocyte dedifferentiation and promoting 

tumor differentiation into normal liver cells [193]. 

Redifferentiation of nodule hepatocytes gives rise to 

normal liver characteristics [194]. Neuroblastoma 

cells differentiate into normal adult neuronal cells 

under specific growth conditions [195-197]. 

Interleukin-15 gives rise to normal epithelial 

differentiation of renal CSCs in vitro [198]. Induced 

differentiation of osteosarcoma-initiating cells gives 

rise to adipocytes, restraining tumorigenicity [199]. 

All trans-retinoic acid promotes osteogenic 

differentiation in osteosarcoma cells [200]. Induced 

differentiation of hepatocellular carcinoma cells 

generates normal hepatocyte-like cells [201]. Breast 

cancer cells undergo transdifferentiation, generating 

adipocytes both in vitro and in vivo [202]. 

Polyphenols, derived from plants, have potential 

therapeutic applications in anti-cancer therapies due 

to their reduced side effects and antioxidant 

properties, as well as their targeting of signaling 

pathways regulating cellular processes such as 

proliferation, apoptosis, and differentiation [203, 

204]. 

Thus, CSCs have the potential to produce new 

tissues upon induced differentiation without 

reprogramming pluripotent factors in vitro or in vivo, 

which in turn promotes tissue regeneration. 

Transdifferentiation and dedifferentiation of tumor 

cells, or redifferentiation of CSCs into normal adult 

cells, exhibit potential connections with tissue 

regeneration [205, 206]. Lacking information about 

stem cell niche pathways controlling cellular 

quiescence and self-renewal in normal stem cells and 

CSCs is considered a major hurdle that could 

potentially hinder the application of the CSC 

differentiation therapy concept to stem cell-based 

therapies [207]. Understanding the CSC 

differentiation mechanisms of solid tumors will 

advance stem cell-based therapies in the future. 

IV. UNSHAKABLE IMMUNE CONTROL 

OF CANCER STEM CELLS 

“Immune privilege” offers shelter to vital tissues 

against foreign antigens [208]. CSCs develop 

defense mechanisms against immune detection and 

destruction using immune modulation strategies that 

enable them to bypass innate and adaptive immune 

control [209-211]. CSC immunological functions 

include evasion from immune clearance, induction 

of "tumor-antigen-specific T cells," activation of 

regulatory immune cells, and release of immune 

suppressive molecules in the tumor 

microenvironment [212-215]. 

Classical major histocompatibility complex (MHC) 

genes encode glycoproteins crucial to the immune 

response [216-218]. Human leukocyte antigen (HLA) 

genes are highly polymorphic in the human genome 

[219, 220]. MHC molecules recognize T cell and NK 

cell receptors [221-224].  
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In many solid tumors, CSCs show low expression 

of MHC-I and II [225-227]. During embryonic 

development, ESCs either express MHC-I at a low 

level or have no MHC-II expression at all, making 

them poor targets for the mother’s immune cells [228, 

229]. Similarly, downregulation of MHC-I 

expression in various CSCs makes them resistant to 

immune detection, evading T cells and NK cell 

killing [230-232]. Many tumor CSCs maintain 

restricted MHC-I levels to avoid NK cell recognition 

[233, 234].  

HLA-G is a nonclassical HLA class-I molecule 

expressed in placental trophoblasts and CSCs [235, 

236]. Tumor cells use HLA-G expression to bypass 

immune detection in the host [237, 238]. CSCs 

upregulate MHC class 1 or Human Leukocyte 

Antigen-G (HLA-G) expression to inhibit NK cell 

activation [239, 240]. 

Core tumor-associated cells in TME involve 

neutrophils [241], macrophages [242], regulatory T 

cells [243], and myeloid suppressor cells [244], 

creating an immunosuppressive environment for 

growth. Tumor cells use various mechanisms to 

bypass NK-mediated immune destruction [245]. 

Tumor microenvironments downregulate natural 

killer group 2, member D receptor ligands, causing 

tumors to escape immune detection [246-248]. 

Limited NK cell infiltration limits tumor elimination. 

NK cells can also be excluded from TME [249]. 

Defects in dentritic cell maturation, which are crucial 

in immune responses, lead to tumor progression [250, 

251]. Tumor-associated macrophages play a crucial 

role in innate immune responses and in the 

likelihood of tumor formation, and this 

immunosuppressive environment can weaken T-

cells and promote tumor development using various 

strategies [252-255]. Myeloid-derived suppressor 

cell accumulation is promoted by various stress 

conditions that weaken immature myeloid cell 

differentiation, suppressing “antitumor immune 

responses” in order to maintain the CSC population 

[256-258]. Neutrophils contribute to tumor 

progression both directly and indirectly by 

influencing the tumor microenvironment and 

inducing tumor progression by producing cytokines, 

chemokines, reactive oxygen species, proteinases, 

and toxins that are able to alter the tumor 

microenvironment [259-264]. In many solid tumors, 

regulatory T cells and regulatory B cells facilitate 

tumor development via several immunosuppressive 

mechanisms [265-271]. 

Concerning these basic immunomodulatory 

mechanisms, CSCs are tricky players to escape 

immune detection and survive within a foreign host, 

which is a fundamental requirement in allogeneic 

stem cell treatments. 

V. DISCUSSION 

A stem cell bank stores donor stem cells prior to 

clinical application [272, 273]. The generation of 

MHC/HLA-matched allogeneic stem cell banks for 

a large population could significantly reduce 

immunological rejection and the cost of stem cell-

based cell therapy [274]. 

Although autologous methods offer a reduced risk 

of immunological rejection compared to allogeneic 

donor methods [275, 276], autologous 

transplantation is costly and requires a lengthy 

process, limiting its therapeutic potential [277]. 

There is no need to identify a HLA-matched donor 

in autologous transplantation, but due to several 

shortcomings, allogeneic stem cell banks are critical 

to improving their therapeutic efficacy, and it is 

crucial to identify a HLA-matched donor in order to 

prevent immune rejection upon allogeneic 

transplantation [278, 279]. Allogeneic treatments 

offer viable manufacturing of multiple “allografts” 

from a single donor, simplifying the stem cell 

manufacturing process and reducing the time to 

transplant stem cells to patients [75]. However, 

allogeneic stem cell therapy is limited to HLA-

matched donors [280]. 

CSCs resemble iPSC characteristics, potentially 

allowing reprogramming in order to generate an 

infinite CSC pool, but cancer cell reprogramming 

faces many challenges due to the negative 

association of cancer cell diversity with successful 

reprogramming [281, 282]. Furthermore, cells 

reprogrammed with pluripotent factors have a high 

potential for tumor formation [312]. 

CSCs possess immune privilege, enabling them to 

bypass immune control within the host by 

developing immune modulation strategies against 

immune responses [283, 284].  

Presently, cancer therapy considers eradicating 

cancer via differentiation of CSCs rather than killing 
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them through cytotoxicity [285-287]. Cancers such 

as leukemia [288, 289], glioma [290], liver [291], 

colon [292], breast [293], skin [237], ovarian [294], 

lung carcinoma [295], neuroblastoma [296], and 

melanoma [297], etc. offer positive results to 

differentiation therapy. For instance, successful 

application of polyphenols manifests differentiation 

in many tumors [298, 299]. Resveratrol exhibits 

antitumor effects in various cancers, modulating 

tumorigenesis [300, 301] and inducing the 

differentiation of glioma stem cells into non-

tumorigenic cells, potentially eliminating tumors 

[302]. Flavonoids are plant compounds with 

therapeutic effects on glioma cells, increasing 

differentiation biomarkers and preventing cancer 

[303]. Chlorogenic acid induces the differentiation 

of neuroblastoma cells in vitro and in vivo by 

inhibiting acetyl-CoA acetyltransferase [304]. 

Kaempferol and melatonin promote neuroblastoma 

differentiation [305]. However, incomprehensible 

details on normal differentiation pathway 

mechanisms need to be resolved by researchers [189]. 

Generation of the desired CSC line of interest in 

vitro and in vivo is viable [306, 307]. However, 

isolation and in vitro and in vivo replication of CSCs 

are limited due to the lack of CSC model 

development [308, 309]. Furthermore, limitations in 

in vitro and in vivo two-dimensional cultures of CSC 

restrict CSC-based clinical studies [310, 311]. 

Interestingly, 3D cellular scaffolding models offer a 

pragmatic tumor microenvironment, which is crucial 

for tissue regeneration [312, 313]. 3D tumor models 

enable in vitro and in vivo CSC replication, enabling 

CSCs to generate unlimited stem cells for stem cell-

based therapy [314, 315]. Effective 3D cell scaffold 

methods for enriching CSCs are needed due to 

limitations in existing methods [316, 317]. Thus, 

standardized 3D tumor models could revolutionize 

in vitro and in vivo replication and expansion of 

CSCs in preclinical settings [318, 319]. 

 

VI. CONCLUSION 

In conclusion, immune modulation of CSCs 

prevents the elimination of CSCs by the immune 

system, enabling allogeneic CSCs for various 

clinical studies. The unique properties of CSCs, 

including self-renewal, pluripotency, immune 

modulation, and the ability to differentiate into 

heterogeneous lineages of cancer cells, offer novel 

strategies for the application of MHC/HLA-matched 

allogeneic cancer stem cells to a large population for 

tissue regeneration, disease modeling, drug 

discovery, and the revolution of economically viable 

stem cell-based therapy, which could significantly 

reduce immune rejection. However, further clinical 

studies are required to ensure safe and efficient 

effects in vivo. The use of allogeneic CSC for the 

regeneration of incurable degenerative diseases 

based on differentiation therapy may be an 

alternative to iPSC technology. Therefore, CSC may 

represent a more promising stem cell candidate in 

stem cell-based therapy, and I believe that CSC will 

be one of the stem cell researchers' great interests, 

improving patient outcomes. 
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