Даниил Федоров
The effects of severe hypobaric hypoxia and inhibition of hypoxia-inducible factor-1 (hif-1) on biomarkers of cardiac and skeletal muscle injury in rats
- Authors Details :
- D. A. Fedorov,
- M. Yu. Frolova,
- I. E. Krasovskaya,
- N. V. Kuleva
Journal title : Biophysics
Publisher : Pleiades Publishing Ltd
Online ISSN : 1555-6654
Page Number : 808-811
Journal volume : 64
Journal issue : 5
598 Views
Original Article
The goal of the present study was to investigate the molecular mechanisms that underlie heart andskeletal muscle damage in male Wistar rats weighing 200–250 g in response to a 3-h exposure to 180 mm Hg(5% O2) in the model of severe hypobaric hypoxia. It has been demonstrated that the level of the cardiac bio-marker troponin I in the blood plasma of rats exposed to severe hypobaric hypoxia for 3 h increased signifi-cantly compared to the control group, indicating myocardial injury. At the same time, the administration ofthe HIF-1α transcription factor inhibitor did not affect the plasma level of troponin I. In contrast, the releaseof the non-specific biomarker myoglobin into the bloodstream did not increase in response to hypoxia com-pared to the control animals. In addition, 24 h after the exposure to severe hypobaric hypoxia the serum myo-globin level was significantly lower in animals administered with the HIF-1α inhibitor topotecan than in ratsthat did not receive topotecan. Therefore, it may be assumed that the inhibition of the HIF-1α transcriptionfactor 10 min before exposure to severe hypobaric hypoxia reduces skeletal muscle damage. The mechanismsthat affect the adaptation of heart and skeletal muscles to hypoxia are discussed.
Article DOI & Crossmark Data
DOI : https://doi.org/10.1134/S000635091905004X
Article Subject Details
Article Keywords Details
Article File
Full Text PDF
Article References
- (1). E. Rybnikova and M. Samoilov, Front. Neurosci. 23 (9), 388 (2015).
- (2). W. Kaelin and P. Rateliffe, Mol. Cell. 30, 393 (2008)
- (3). Y. Sun, X. Chen, et al., Front. Mol. Neurosci. 10, 257 (2017).
- (4). O. V. Vetrovoy, Extended Abstract of Candidate’s Dissertation in Biology (St. Petersburg, 2018) [In Russian].
- (5). W. Kaelin, Ann. Rev. Biochem. 74, 115 (2005).
- (6). K. Janke, U. Brockmeier, et al., J. Cell Sci. 126 (12), 2629 (2013).
- (7). E. Rybnikova, N. Sitnik, et al., Brain Res. 1089 (1), 195 (2006).
- (8). H. Ban, Y. Uto, and H. Nakamura, Expert Opin. Ther. Pat. 21, 131 (2011).
- (9). O. V. Vetrovoy, Candidate’s Dissertation in Biology (St. Petersburg, 2018) [In Russian].
- (10). N. A. Plokhinskiy, in Current Problems in Modern Genetics, Ed. by S. I. Alikhanyan (Moscow State Univ., Moscow, 1966), pp. 564–602 [in Russian].
- (11). J. K. Brunelli, E. Bell, et al., Cell Metab. 1, 409 (2005).
- (12). K. Mansfield, R. Gury, et al., Cell Metab. 1, 393 (2005).
- (13). R. Hagen, C. Taylor, et al., Science 302, 1975 (2003).
- (14). R. Dangel, O. Bernardette, et al., Sci. Rep. 7 (12092), 1 (2017)
- (15). M. Feelisch, C. Pensenstadler, et al., J. Biol. Chem. 283, 33927 (2008).
- (16). N. V. Kuleva and I. E. Krasovskaya, Tsitologiya 57 (8): 563 (2015).
- (17). N. V. Kuleva, D. A. Fedorov, and I. E. Krasovskaya, Tsitologiya 60 (1), 5 (2018).
- (18). N. V. Kuleva and I. E. Krasovskaya, Biophysics (Moscow) 61 (5), 717 (2016).
- (19). T. Clanton, J. Appl. Physiol. 102, 2379 (2007).
- (20). T. Chaillou, Front. Physiol. 9 (1450), 1 (2018).