Dr. Salman Ahmed

Therapeutic potential of marine peptides in cervical and ovarian cancers

  • Authors Details :  
  • Salman Ahmed,  
  • Haroon Khan,  
  • Sajad Fakhri,  
  • Michael Aschner ,  
  • Wai San Cheang

Journal title : Molecular and Cellular Biochemistry

Publisher : Springer Science and Business Media LLC

Online ISSN : 1573-4919

Page Number : 605-619

Journal volume : 477

Journal issue : 2

52 Views Reviews Article

Cervical and ovarian cancers contribute significantly to female morbidity and mortality worldwide. The current standard of treatment, including surgical removal, radiation therapy, and chemotherapy, offers poor outcomes. There are many side effects to traditional chemotherapeutic agents and treatment-resistant types, and often, the immune response is depressed. As a result, conventional approaches have evolved to include new alternative remedies, such as natural compounds. Aquatic species provide a rich supply of possible drugs. The potential anti-cancer peptides are less toxic to normal cells and can attenuate multiple drug resistance by providing a productive treatment approach. The physiological effects of marine peptides are described in this review, which focuses on various pathways, such as apoptosis, microtubule balance disturbances, suppression of angiogenesis, cell migration/invasion, and cell viability. The review also highlights the potential role of marine peptides as safe and efficacious therapeutic agents for treating cervical and ovarian cancers.

Article DOI & Crossmark Data

DOI : https://doi.org/10.1007/s11010-021-04306-y

Article Subject Details


Article Keywords Details



Article File

Full Text PDF


Article References

  • (1). Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953
  • (2). Cohen PA, Jhingran A, Oaknin A et al (2019) Cervical cancer. Lancet 393(10167):169–182
  • (3). Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71(3):209–249
  • (4). Movva S, Rodriguez L, Arias-Pulido H et al (2009) Novel chemotherapy approaches for cervical cancer. Cancer 115(14):3166–3180
  • (5). Board. PATE, Cervical cancer treatment (PDQ®): health professional version. PDQ cancer information summaries., ed. B. (MD). 2021, US: National Cancer Institute. Accessed https://www.ncbi.nlm.nih.gov/books/NBK66058/
  • (6). Momenimovahed Z, Tiznobaik A, Taheri S et al (2019) Ovarian cancer in the world: epidemiology and risk factors. Int J Women’s Health 11:287–299
  • (7). Reid BM, Permuth JB, Sellers TA (2017) Epidemiology of ovarian cancer: a review. Cancer Biol Med 14(1):9–32
  • (8). Terraneo N, Jacob F, Dubrovska A et al (2020) Novel therapeutic strategies for ovarian cancer stem cells. Front Oncol. https://doi.org/10.3389/fonc.2020.00319
  • (9). Wang X, Zhang H, Chen X (2019) Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2(2):141–160
  • (10). Yuan R, Hou Y, Sun W et al (2017) Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 1401(1):19–27
  • (11). Fakhri S, Yarmohammadi A, Yarmohammadi M et al (2021) Marine natural products: promising candidates in the modulation of gut-brain axis towards neuroprotection. Mar Drugs 19(3):165
  • (12). Zarneshan SN, Fakhri S, Farzaei MH et al (2020) Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020:111714
  • (13). Heidari Khoei H, Fakhri S, Parvardeh S et al (2019) Astaxanthin prevents the methotrexate-induced reproductive toxicity by targeting oxidative stress in male mice. Toxin Rev 38(3):248–254
  • (14). Barreca M, Spanò V, Montalbano A et al (2020) Marine anticancer agents: an overview with a particular focus on their chemical classes. Mar Drugs 18(12):619
  • (15). Nigam M, Suleria HAR, Farzaei MH et al (2019) Marine anticancer drugs and their relevant targets: a treasure from the ocean. DARU J Pharm Sci 27(1):491–515
  • (16). Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (review). Int J Oncol 57(3):678–696
  • (17). Kang HK, Choi M-C, Seo CH et al (2018) Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int J Mol Sci 19(3):919
  • (18). Zhang Q-T, Liu Z-D, Wang Z et al (2021) Recent advances in small peptides of marine origin in cancer therapy. Mar Drugs 19(2):115–143
  • (19). Ucak I, Afreen M, Montesano D et al (2021) Functional and bioactive properties of peptides derived from marine side streams. Mar Drugs 19(2):71
  • (20). Bai R, Friedman SJ, Pettit GR et al (1992) Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia: interaction with tubulin and effects on cellular microtubules. Biochem Pharmacol 43(12):2637–2645
  • (21). Pettit GR, Kamano Y, Herald CL et al (1993) Isolation of dolastatins 10–15 from the marine mollusc dolabella auricularia. Tetrahedron 49(41):9151–9170
  • (22). Gamble WR, Durso NA, Fuller RW et al (1999) Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorgan Med Chem 7(8):1611–1615
  • (23). Mooberry SL, Leal RM, Tinley TL et al (2003) The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. Int J Cancer 104(4):512–521
  • (24). Zhan K-X, Jiao W-H, Yang F et al (2014) Reniochalistatins A-E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J Nat Prod 77(12):2678–2684
  • (25). Quah Y, Mohd Ismail NI, Ooi JLS et al (2019) Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum. J Zhejiang Univ Sci B 20(1):59–70
  • (26). Lee Y, Phat C, Hong S-C (2017) Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 95:94–105
  • (27). Matthew S, Schupp PJ, Luesch H (2008) Apratoxin E, a cytotoxic peptolide from a guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J Nat Prod 71(6):1113–1116
  • (28). Suenaga K, Mutou T, Shibata T et al (2004) Aurilide, a cytotoxic depsipeptide from the sea hare Dolabella auricularia: isolation, structure determination, synthesis, and biological activity. Tetrahedron 60(38):8509–8527
  • (29). Smith CD, Zhang X, Mooberry SL et al (1994) Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 54(14):3779
  • (30). Kwan JC, Ratnayake R, Abboud KA et al (2010) Grassypeptolides A?C, cytotoxic bis-thiazoline containing marine cyclodepsipeptides. J Org Chem 75(23):8012–8023
  • (31). Thornburg CC, Thimmaiah M, Shaala LA et al (2011) Cyclic depsipeptides, grassypeptolides D and E and ibu-epidemethoxylyngbyastatin 3, from a Red Sea Leptolyngbya cyanobacterium. J Nat Prod 74(8):1677–1685
  • (32). Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71(9):1625–1629
  • (33). Iwasaki A, Shiota I, Sumimoto S et al (2017) Kohamamides A, B, and C, cyclic depsipeptides from an Okeania sp. marine cyanobacterium. J Nat Prod 80(6):1948–1952
  • (34). Tran TD, Pham NB, Fechner G et al (2012) Cytotoxic cyclic depsipeptides from the Australian marine sponge Neamphius huxleyi. J Nat Prod 75(12):2200–2208
  • (35). Zou B, Long K, Ma D (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of Palau’amide. Org Lett 7(19):4237–4240
  • (36). Taniguchi M, Nunnery JK, Engene N et al (2010) Palmyramide A, a cyclic depsipeptide from a palmyra atoll collection of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73(3):393–398
  • (37). Luesch H, Pangilinan R, Yoshida WY et al (2001) Pitipeptolides A and B, new cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 64(3):304–307
  • (38). Coleman JE, Dilip de Silva E, Kong F et al (1995) Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 51(39):10653–10662
  • (39). Zampella A, Sepe V, Bellotta F et al (2009) Homophymines B-E and A1–E1, a family of bioactive cyclodepsipeptides from the sponge Homophymia sp. Org Biomol Chem 7(19):4037–4044
  • (40). Pettit GR, Hogan F, Xu J-P et al (2008) Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms. J Nat Prod 71(3):438–444
  • (41). Salvador LA, Biggs JS, Paul VJ et al (2011) Veraguamides A-G, cyclic hexadepsipeptides from a dolastatin 16-producing cyanobacterium Symploca cf. hydnoides from Guam. J Nat Prod 74(5):917–927
  • (42). Schmidt EW, Raventos-Suarez C, Bifano M et al (2004) Scleritodermin A, a cytotoxic cyclic peptide from the lithistid sponge Scleritoderma nodosum. J Nat Prod 67(3):475–478
  • (43). McKeever B, Pattenden G (2003) Total synthesis of trunkamide A, a novel thiazoline-based prenylated cyclopeptide metabolite from Lissoclinum sp. Tetrahedron 59(15):2713–2727
  • (44). Bonnard I, Rolland M, Salmon J-M et al (2007) Total structure and inhibition of tumor cell proliferation of laxaphycins. J Med Chem 50(6):1266–1279
  • (45). Matsuo Y, Kanoh K, Yamori T et al (2007) Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J Antibiot 60(4):251–255
  • (46). Marquez BL, Watts KS, Yokochi A et al (2002) Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J Nat Prod 65(6):866–871
  • (47). De Oliveira EO, Graf KM, Patel MK et al (2011) Synthesis and evaluation of hermitamides A and B as human voltage-gated sodium channel blockers. Bioorg Med Chem 19(14):4322–4329
  • (48). Son S, Ko S-K, Jang M et al (2016) New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Mar Drugs 14(4):72
  • (49). Shaik MI, Sarbon NM (2020) A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate. Food Rev Int 2020:1–21
  • (50). Neklyudov AD, Ivankin AN, Berdutina AV (2000) Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol 36(5):452–459
  • (51). Pan X, Zhao Y-Q, Hu F-Y et al (2016) Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar Drugs 14(8):153
  • (52). Chi C-F, Hu F-Y, Wang B et al (2015) Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J Funct Foods 15:301–313
  • (53). Khalifa SAM, Elias N, Farag MA et al (2019) Marine natural products: a source of novel anticancer drugs. Mar Drugs 17(9):491
  • (54). Wali AF, Majid S, Rasool S et al (2019) Natural products against cancer: review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J 27(6):767–777
  • (55). Ruiz-Torres V, Encinar JA, Herranz-López M et al (2017) An updated review on marine anticancer compounds: the use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 22(7):1037
  • (56). Jimenez PC, Wilke DV, Costa-Lotufo LV (2018) Marine drugs for cancer: surfacing biotechnological innovations from the oceans. Clinics 73(suppl 1):e482s–e482s
  • (57). Fakhri S, Moradi SZ, Ash-Rafzadeh A et al (2021) Targeting cellular senescence in cancer by plant secondary metabolites: a systematic review. Pharmacol Res 2021:105961
  • (58). Mollinedo F, Gajate C (2003) Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8(5):413–450
  • (59). Manchado E, Guillamot M, Malumbres M (2012) Killing cells by targeting mitosis. Cell Death Differ 19(3):369–377
  • (60). Ramesh A, Chander RV, Srinivasan C et al (2020) Prevalence of angiogenesis, proliferation, and apoptosis markers of cervical cancer and their correlation with clinicopathological parameters. J Oncol. https://doi.org/10.1155/2020/8541415
  • (61). Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19(2):448
  • (62). Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor Perspect Biol 5(6):a008672
  • (63). Mooberry SL, Busquets L, Tien G (1997) Induction of apoptosis by cryptophycin 1, a new antimicrotubule agent. Int J Cancer 73(3):440–448
  • (64). Wang C, Liu M, Cheng L et al (2012) A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma. Exp Biol Med 237(4):442–450
  • (65). Li B, Gao M-H, Zhang X-C et al (2006) Molecular immune mechanism of C-phycocyanin from Spirulina platensis induces apoptosis in HeLa cells in vitro. Biotechnol Appl Biochem 43(3):155–164
  • (66). Hsu J-C, Lin L-C, Tzen JTC et al (2011) Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells. Peptides 32(6):1110–1116
  • (67). Huang T-C, Lee J-F, Chen J-Y (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9(10):1995
  • (68). Xie J-J, Zhou F, Li E-M et al (2011) FW523-3, a novel lipopeptide compound, induces apoptosis in cancer cells. Mol Med Rep 4(4):759–763
  • (69). Campbell KJ, Tait SWG (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol 8(5):180002
  • (70). Abdullah N, Tamimi Y, Dobretsov S et al (2021) Malformin-A1 (MA1) sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis. Molecules 26(12):3624
  • (71). Nguyen V-T, Lee JS, Qian Z-J et al (2014) Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 12(1):69–87
  • (72). Park G-B, Jeong J-Y, Kim D (2019) Gliotoxin enhances autophagic cell death via the DAPK1-TAp63 signaling pathway in paclitaxel-resistant ovarian cancer cells. Mar Drugs 17(7):412
  • (73). Liu S, Aweya JJ, Zheng L et al (2021) LvHemB1, a novel cationic antimicrobial peptide derived from the hemocyanin of Litopenaeus vannamei, induces cancer cell death by targeting mitochondrial voltage-dependent anion channel 1. Cell Biol Toxicol 2021:1–24
  • (74). Yue J, López JM (2020) Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 21(7):2346
  • (75). García-Fernández LF, Losada A, Alcaide V et al (2002) Aplidin™ induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C ?. Oncogene 21(49):7533–7544
  • (76). Teruya T, Sasaki H, Fukazawa H et al (2009) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11(21):5062–5065
  • (77). Shi X, Wang J, Lei Y et al (2019) Research progress on the PI3K/AKT signaling pathway in gynecological cancer. Mol Med Rep 19(6):4529–4535
  • (78). Jiang N, Dai Q, Su X et al (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 47(6):4587–4629
  • (79). Lee J-H, Lee J-Y, Rho SB et al (2014) PACAP inhibits tumor growth and interferes with clusterin in cervical carcinomas. FEBS Lett 588(24):4730–4739
  • (80). Watari H, Kanuma T, Ohta Y et al (2010) Clusterin expression inversely correlates with chemosensitivity and predicts poor survival in patients with locally advanced cervical cancer treated with cisplatin-based neoadjuvant chemotherapy and radical hysterectomy. Pathol Oncol Res 16(3):345–352
  • (81). Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21(6):619–670
  • (82). van Vuuren RJ, Visagie MH, Theron AE et al (2015) Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 76(6):1101–1112
  • (83). Fanale D, Bronte G, Passiglia F et al (2015) Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015:690916
  • (84). Mukhtar E, Adhami VM, Mukhtar H (2014) Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 13(2):275–284
  • (85). Bates D, Eastman A (2017) Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 83(2):255–268
  • (86). Michels J, Johnson PWM, Packham G (2005) Mcl-1. Int J Biochem Cell Biol 37(2):267–271
  • (87). Loganzo F, Discafani CM, Annable T et al (2003) HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Can Res 63(8):1838–1845
  • (88). Panda D, DeLuca K, Williams D et al (1998) Antiproliferative mechanism of action of cryptophycin-52: Kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends. Proc Natl Acad Sci USA 95(16):9313
  • (89). Huai J, Jöckel L, Schrader K et al (2010) Role of caspases and non-caspase proteases in cell death. F1000 Biol Rep 2:48
  • (90). Kim KK, Turner R, Khazan N et al (2020) Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS ONE 15(5):e0232253
  • (91). Peregrina-Sandoval J, del Toro-Arreola S, Oceguera-Villanueva A et al (2017) Trypsin proteolytic activity in cervical cancer and precursor lesions. Int J Clin Exp Pathol 10(5):5587–5593
  • (92). Rastogi N, Duggal S, Singh SK et al (2015) Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells. Oncotarget 6(41):43310–43325
  • (93). Mayer C, Darb-Esfahani S, Meyer A-S et al (2016) Neutrophil granulocytes in ovarian cancer—induction of epithelial-to-mesenchymal-transition and tumor cell migration. J Cancer 7(5):546–554
  • (94). Rosso M, Majem B, Devis L et al (2017) E-cadherin: a determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS ONE 12(9):e0184439–e0184439
  • (95). Linington RG, Edwards DJ, Shuman CF et al (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71(1):22–27
  • (96). Rubio BK, Parrish SM, Yoshida W et al (2010) Depsipeptides from a guamanian marine cyanobacterium, Lyngbya bouillonii, with selective inhibition of serine proteases. Tetrahedron Lett 51(51):6718–6721
  • (97). Gunasekera SP, Miller MW, Kwan JC et al (2010) Molassamide, a depsipeptide serine protease inhibitor from the marine cyanobacterium Dichothrix utahensis. J Nat Prod 73(3):459–462
  • (98). Matthew S, Paul VJ, Luesch H (2009) Largamides A-C, tiglic acid-containing cyclodepsipeptides with elastase-inhibitory activity from the marine cyanobacterium Lyngbya confervoides. Planta Med 75(5):528–533
  • (99). Plaza A, Bewley CA (2006) Largamides A?H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 71(18):6898–6907
  • (100). Matthew S, Ross C, Paul VJ et al (2008) Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron 64(18):4081–4089
  • (101). Matthew S, Ross C, Rocca JR et al (2007) Lyngbyastatin 4, a dolastatin 13 analogue with elastase and chymotrypsin inhibitory activity from the marine cyanobacterium Lyngbya confervoides. J Nat Prod 70(1):124–127
  • (102). Taori K, Matthew S, Rocca JR et al (2007) Lyngbyastatins 5–7, potent elastase inhibitors from floridian marine cyanobacteria, Lyngbya spp. J Nat Prod 70(10):1593–1600
  • (103). Kwan JC, Taori K, Paul VJ et al (2009) Lyngbyastatins 8–10, elastase inhibitors with cyclic depsipeptide scaffolds isolated from the marine cyanobacterium Lyngbya semiplena. Mar Drugs 7(4):528–538
  • (104). Matthew S, Paul VJ, Luesch H (2009) Tiglicamides A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry 70(17–18):2058–2063
  • (105). Eatemadi A, Aiyelabegan HT, Negahdari B et al (2017) Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother 86:221–231
  • (106). Kwan JC, Eksioglu EA, Liu C et al (2009) Grassystatins A?C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52(18):5732–5747
  • (107). Trendowski M (2014) Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochem Biophys Acta 1846(2):599–616
  • (108). Angus M, Ruben P (2019) Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels 13(1):400–409
  • (109). Altamura C, Greco MR, Carratù MR et al (2021) Emerging roles for ion channels in ovarian cancer: pathomechanisms and pharmacological treatment. Cancers 13(4):668
  • (110). Besson P, Driffort V, Bon É et al (2015) How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? Biochim Biophys Acta 1848(10 Part B):2493–2501
  • (111). Lopez-Charcas O, Espinosa AM, Alfaro A et al (2018) The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity. Sci Rep 8(1):12995
  • (112). Quintero-Fabián S, Arreola R, Becerril-Villanueva E et al (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370–1370
  • (113). Taraboletti G, Poli M, Dossi R et al (2004) Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer 90(12):2418–2424
  • (114). Visconti R, Della Monica R, Grieco D (2016) Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J Exp Clin Cancer Res 35(1):153–153
  • (115). Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992
  • (116). Sato S-i, Murata A, Orihara T et al (2011) Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol 18(1):131–139
  • (117). Aggarwal V, Tuli HS, Varol A et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9(11):735
  • (118). Poetsch AR (2020) The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 18:207–219
  • (119). Patel A, Mishra S, Ghosh P (2006) Antioxidant potential of C-phycocyanin isolated from cyanobacterial species Lyngbya, Phormidium and Spirulina spp. Indian J Biochem Biophys 43:25–31
  • (120). Williams DE, Yu K, Behrisch HW et al (2009) Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J Nat Prod 72(7):1253–1257
  • (121). Ueoka R, Ise Y, Ohtsuka S et al (2010) Yaku’amides A and B, cytotoxic linear peptides rich in dehydroamino acids from the marine sponge Ceratopsion sp. J Am Chem Soc 132(50):17692–17694
  • (122). Nakao Y, Yoshida WY, Takada Y et al (2004) Kulokekahilide-2, a cytotoxic depsipeptide from a cephalaspidean mollusk philinopsis speciosa. J Nat Prod 67(8):1332–1340
  • (123). Serova M, de Gramont A, Bieche I et al (2013) Predictive factors of sensitivity to elisidepsin, a novel Kahalalide F-derived marine compound. Mar Drugs 11(3):944–959
  • (124). Salvador LA, Paul VJ, Luesch H (2010) Caylobolide B, a macrolactone from symplostatin 1-producing marine cyanobacteria Phormidium spp from Florida. J Nat Prod 73(9):1606–1609
  • (125). Davies-Coleman MT, Dzeha TM, Gray CA et al (2003) Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J Nat Prod 66(5):712–715
  • (126). Hu X, Song L, Huang L et al (2012) Antitumor effect of a polypeptide fraction from Arca subcrenata in vitro and in vivo. Mar Drugs 10(12):2782–2794
  • (127). Taylor SW, Craig AG, Fischer WH et al (2000) Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275(49):38417–38426
  • (128). Lin W-J, Chien Y-L, Pan C-Y et al (2009) Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30(2):283–290
  • (129). Hamed AR, Abdel-Azim NS, Shams KA et al (2019) Targeting multidrug resistance in cancer by natural chemosensitizers. Bull Natl Res Cent 43(1):8
  • (130). Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21(9):3233
  • (131). Stratmann K, Burgoyne DL, Moore RE et al (1994) Hapalosin, a cyanobacterial cyclic depsipeptide with multidrug-resistance reversing activity. J Org Chem 59(24):7219–7226
  • (132). Hoffman MA, Blessing JA, Lentz SS (2003) A phase II trial of dolastatin-10 in recurrent platinum-sensitive ovarian carcinoma: a gynecologic oncology group study. Gynecol Oncol 89(1):95–98
  • (133). de Jonge MJA, van der Gaast A, Planting AST et al (2005) Phase I and pharmacokinetic study of the dolastatin 10 analogue TZT-1027, given on days 1 and 8 of a 3-week cycle in patients with advanced solid tumors. Clin Cancer Res 11(10):3806
  • (134). Patel S, Keohan ML, Saif MW et al (2006) Phase II study of intravenous TZT-1027 in patients with advanced or metastatic soft-tissue sarcomas with prior exposure to anthracycline-based chemotherapy. Cancer 107(12):2881–2887
  • (135). Alonso-Álvarez S, Pardal E, Sánchez-Nieto D et al (2017) Plitidepsin: design, development, and potential place in therapy. Drug Des Dev Ther 11:253–264
  • (136). D’agostino G, Del Campo J, Mellado B et al (2006) A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int J Gynecol Cancer 16(1):71
  • (137). Cain JM, Liu P, Alberts DE et al (1992) Phase II trial of didemnin-B in advanced epithelial ovarian cancer. Invest New Drugs 10(1):23–24
  • (138). Yan Y-B, Tian Q, Zhang J-F et al (2020) Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncol Lett 20(5):141
  • (139). Park S-H, Kim M, Lee S et al (2021) Therapeutic potential of natural products in treatment of cervical cancer: a review. Nutrients 13(1):154
  • (140). Beena N, Deepak K, Diwan SR (2017) Marine peptides as anticancer agents: a remedy to mankind by nature. Curr Protein Pept Sci 18(9):885–904
  • (141). Patel M, Kumar R, Kishor K et al (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119(6):3510–3673
  • (142). Lee AC-L, Harris JL, Khanna KK et al (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20(10):2383
  • (143). Apostolopoulos V, Bojarska J, Chai T-T et al (2021) A global review on short peptides: frontiers and perspectives. Molecules 26(2):430
  • (144). Xie M, Liu D, Yang Y (2020) Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10(7):200004



More Article by Dr. Salman Ahmed

Analgesic and antiemetic activity of cleome viscosa l.

The seeds of cleome viscosa are used in traditional systems of medicine for the treatment of many diseases in asia. this study evaluated fixed oil from the seeds of cleome viscosa...

Toxicity assessment of mucuna pruriens linn seeds

Plants have been used as medicine for the treatment of diseases for thousands of years. these herbal remedies, although natural, can cause some serious damaging effects on the vita...

Antiemetic activity of some aromatic plants

The current study was conducted to explore the antiemetic activity of ten aromatic medicinal plants viz., carissa carandus l. (fruits), chichorium intybus l (flowers), cinnamum tam...

Anti-emetic activity of some leguminous plants

Crude methanol extracts of the leaves of adenanthera pavonina l., peltoforum roxburghii l, prosopis cineraria l., and prosopis juliflora dc., were evaluated for anti-emetic activit...